Skip to main content
Log in

Incompressible viscous Newtonian flow in a fissured medium of general deterministic type

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study homogenization for nonstationary Navier–Stokes systems in a fissured medium of general deterministic type. Assuming that the blocks of the porous medium consist of deterministically distributed inclusions and the elasticity tensors satisfy general deterministic hypotheses, we prove that the macroscopic problem is a Navier-Stokes type equation for Newtonian fluid in a fixed domain. Our setting includes the classical periodic framework, the weakly almost periodic one, and some others. Bibliography: 34 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata),” J. Appl. Math. Mech. 24, 1286–1303 (1960).

    Article  MATH  Google Scholar 

  2. J. E. Warren and P. J. Root, “The behavior of naturally fractured reservoirs,” Soc. Petro. Eng. J. 3, 245–255 (1963).

    Google Scholar 

  3. K. H. Coats and B. D. Smith, “Dead-end pore volume and dipersion in porous media,” Trans. Soc. Petr. Engin. 231, 73–84 (1964).

    Google Scholar 

  4. T. Arbogast, J. Douglas Jr., and U. Hornung, “Derivation of the double porosity model of single phase flow via homogenization theory,” SIAM J. Math. Anal. 21, 823–836 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. S. Huyakorn and G. F. Pinder, Computational Methods in Subsurface Flow, Academic Press, New York (1983).

    MATH  Google Scholar 

  6. H. Kazemi, “Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution,” Soc. Pet. Eng. J. 9, 451–462 (1969).

    Google Scholar 

  7. A. S. Odeh, “Unsteady-state behavior of naturally fractured reservoirs,” Soc. Pet. Eng. J. 5, 60–66 (1965).

    Google Scholar 

  8. M. Peszyńska and R. E. Showalter, “Multiscale elliptic-parabolic systems for flow and transport,” Electron. J. Differ. Equ. 2007, 1–30 (2007).

    Google Scholar 

  9. M. Peszyńska, R. E. Showalter, and S. -Y. Yi, “Homogenization of a pseudoparabolic system,” Appl. Anal. 88, 1265–1282 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. E. Showalter and D. B. Visarraga, “Double-diffusion models from a highly-heterogeneous medium,” J. Math. Anal. Appl. 295, 191–201 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. -Y. Yi, M. Peszyńska, and R. E. Showalter, “Numerical upscaled model of transport with nonseparable scale,” In: XVIII Intern. Conf. on Water Resources CMWR 2010, pp. 1–8, CIMNE, Barcelona (2010).

  12. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).

    MATH  Google Scholar 

  13. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam (1984).

    MATH  Google Scholar 

  14. J. Simon, “On the existence of the pressure for solutions of the variational Navier–Stokes equations,” J. Math. Fluid Mech. 1, 225–234 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Douanla and J. L. Woukeng, “Almost periodic homogenization of a generalized Ladyzhenskaya model for incompressible viscous flow,” J. Math. Sci. (N. Y.) 189, 431–458 (2013).

    Article  Google Scholar 

  16. M. Amar, A. DallAglio, and F. Paronetto, “Homogenization of forward-backward parabolic equations,” Asymptot. Anal. 42, 123–132 (2005).

    MathSciNet  MATH  Google Scholar 

  17. V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin (1994).

    Book  Google Scholar 

  18. G. Nguetseng, “Homogenization structures and applications I,” Z. Anal. Anwen. 22, 73–107 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. L. Woukeng, “Homogenization in algebras with mean value,” arXiv: 1207. 5397v1, 2012 [Submitted]

  20. V. V. Zhikov and E. V. Krivenko, “Homogenization of singularly perturbed elliptic operators” [in Russian], Mat. Zametki 33, 571–582 (1983); English transl.: Math. Notes 33, 294–300 (1983).

    MathSciNet  Google Scholar 

  21. J. Casado Diaz and I. Gayte, “The two-scale convergence method applied to generalized Besicovitch spaces,” Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 458, 2925–2946 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Sango, N. Svanstedt, and J. L.Woukeng, “Generalized Besicovitch spaces and application to deterministic homogenization,” Nonlin. Anal. TMA 74, 351–379 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Nguetseng, M. Sango, and J. L.Woukeng, “Reiterated ergodic algebras and applications,” Commun. Math. Phys. 300, 835–876 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Dunford and J. T. Schwartz, Linear Operators. I, II, Interscience Publ., New York (1963).

  25. A. Bourgeat, A. Mikelić, and S. Wright, “Stochastic two-scale convergence in the mean and applications,” J. Reine Angew. Math. 456, 19–51 (1994).

    MathSciNet  MATH  Google Scholar 

  26. J. L. Woukeng, “Homogenization of nonlinear degenerate nonmonotone elliptic operators in domains perforated with tiny holes,” Acta Appl. Math. 112, 35–68 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford Univ. Press (2004).

  28. L. Schwartz, Théorie des distributions, Hermann, Paris (1966).

    MATH  Google Scholar 

  29. G. Nguetseng, “Homogenization in perforated domains beyond the periodic setting,” J. Math. Anal. Appl. 289, 608–628 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Nguetseng, “Mean value on locally compact abelian groups,” Acta Sci. Math. 69, 203–221 (2003).

    MathSciNet  MATH  Google Scholar 

  31. A. S. Besicovitch, Almost Periodic Functions, Cambridge, Dover Publications (1954).

  32. H. Bohr, Almost Periodic Functions, Chelsea, New York (1947).

    Google Scholar 

  33. W. F. Eberlein, “Abstract ergodic theorems and weak almost periodic functions,” Trans. Am. Math. Soc. 67, 217–240 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Douanla and N. Svanstedt, “Reiterated homogenization of linear eigenvalue problems in multiscale perforated domains beyond the periodic setting,” Commun. Math. Anal. 11, 61–93 (2011).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Douanla.

Additional information

Translated from Problemy Matematicheskogo Analiza 70, May 2013, pp. 105–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douanla, H., Nguetseng, G. & Woukeng, J.L. Incompressible viscous Newtonian flow in a fissured medium of general deterministic type. J Math Sci 191, 214–242 (2013). https://doi.org/10.1007/s10958-013-1313-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1313-x

Keywords

Navigation