Skip to main content
Log in

Hydrodynamical and computational aspects and stability problems for viscoplastic flows

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This survey is devoted to some typical problems modeling technological processes of treatment of materials, rolling of a rigid body on a lubricated surface, the behavior of layers of the Earth’s crust for continuous loading, and dynamical interaction of elements of viscoplastic constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Aganin, R. I. Nigmatulin, M. A. Ilgamov, and I. Sh. Akhatov, “Dynamics of a gas bubble at the center of a spherical volume of a fluid,” Dokl. Ross Akad. Nauk, 369, No. 2, 182–185 (1999).

    Google Scholar 

  2. L. D. Akulenlo, D. V. Georgievskii, D. M. Klimov, S. A. Kumakshev, and S. V. Nesterov, “Squeeze flow of a viscous-plastic material with small yield stress from a planar confuser,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 183–197 (2003).

  3. L. D. Akulenlo, D. V. Georgievskii, D. M. Klimov, S. A. Kumakshev, and S. V. Nesterov, “Deformation of a viscoplastic Bingham medium in a planar confuser,” Prikl. Mekh., 42, No. 4, 3–45 (2006).

    MathSciNet  Google Scholar 

  4. L. D. Akulenko, D. V. Georgievskii, D. M. Klimov, S. A. Kumakshev, and S. V. Nesterov, “Stationary flow of a viscoplastic medium with small yield stress in a plane confuser,” Russ. J. Math. Phys., 10, No. 4, 381–398 (2003).

    MathSciNet  MATH  Google Scholar 

  5. A. N. Alexandrou, E. Duca, and V. Entov, “Inertial, viscous and yield stress effects in Bingham fluid filling of a 2D cavity,” J. Non-Newton. Fluid Mech., 96, No. 3, 383–403 (2001).

    Article  MATH  Google Scholar 

  6. S. Alexandru, “Caracterizarea tranzit,iei de la regimul laminar la cel turbulent de curgere pentru fluide nenewtoniene,” Rev. Chim., 44, No. 7, 676–682 (1993).

    Google Scholar 

  7. L. Anand, K. H. Kim, and T. G. Shawki, “Onset of shear localization in viscoplastic solids,” J. Mech. Phys. Solids, 35, No. 4, 407–429 (1987).

    Article  MATH  Google Scholar 

  8. C. Ancey, “Plasticity and geophysical flows: a review,” J. Non-Newton. Fluid Mech., 142, No. 2–3, 4–35 (2007).

    Article  MATH  Google Scholar 

  9. B. D. Annin, V. O. Bytev, and S. I. Senashov, Group Properties of Equations of Elasticity and Plasticity [in Russian], Izd. Sib. Otd. Akad. Nauk USSR, Novosibirsk, 1985.

    Google Scholar 

  10. N. N. Aref’ev, “An axial flow of a viscous-plastic fluid in a ring gap with hydrolubricant of both walls,” Vestn. Ross. Gos. Akad. Vodn. Transp., 20, 116–124 (2006).

    Google Scholar 

  11. K. Arrow, L. Hurwicz, and H. Uzawa, Studies in Nonlinear Programming, Stanford Univ. Press, Stanford (1958).

    Google Scholar 

  12. I. M. Astrahan, “Stability of the rotating motion of a viscous-plastic fluid between two coaxial cylinders,” Zh. Prikl. Mekh. Tekh. Fiz., 2, 47–53 (1961).

    Google Scholar 

  13. C. Atkinson and K. El-Ali, “Some boundary value problem for the Bingham model,” J. Non-Newton. Fluid Mech., 41, No. 3, 339–363 (1992).

    Article  MATH  Google Scholar 

  14. N. J. Balmforth, R. V. Craster, A. C. Rust, and R. Sassi, “Viscoplastic flow over an inclined surface,” J. Non-Newton. Fluid Mech., 139, No. 1–2, 103–127 (2006).

    Article  MATH  Google Scholar 

  15. N. J. Balmforth, R. V. Craster, R. Sassi, “Shallow viscoplastic flow on an inclined plane,” J. Fluid Mech., 470, 1–29 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. V. Basov, “Estimate of the width of rigid zones of a flow of a compressible Bingham fluid at the equilibrium loss,” Dynam. Solid Medium, 120, 8–15, (2002).

    MathSciNet  MATH  Google Scholar 

  17. I. V. Basov and V. V. Shelukhin, “Generalized solutions to the equations of compressible Bingham flows,” ZAMM (Z. Angew. Math. Mech.), 79, No. 3, 185–192, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. V. Basov and V. V. Shelukhin, “Nonhomogeneous incompressible Bingham viscoplastic as a limit of nonlinear fluids,” J. Non-Newton. Fluid Mech., 142, No. 1–3, 95–103, (2007).

    Article  MATH  Google Scholar 

  19. J. Bejda and T. Wierzbicki, “Dispersion of small amplitude stress waves in pre-stressed elastic, visco-plastic cylindrical bars,” Quart. Appl. Math., 24, No. 1, 63–71 (1966).

    Google Scholar 

  20. V. P. Belomytsev and N. N. Gvozdikov, “On the loss of heat stability of the motion of a viscousplastic material,” Dokl. Akad. Nauk SSSR, 170, No. 2, 305–307 (1966).

    Google Scholar 

  21. M. Bercovier and M. Engelman, “A finite element method for incompressible non-Newtonian flows,” J. Comput. Phys., 36, No. 2, 313–326 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Betchov and W. O. Criminale, Stability of Parallel Flows, Academic Press, New York-London (1967).

    Google Scholar 

  23. C. R. Beverly and R. I. Tanner, Numerical analysis of three-dimensional Bingham plastic flow, J. Non-Newton. Fluid Mech., 42, No. 1–2, 85–115 (1992).

    Article  Google Scholar 

  24. E. Bingham, Fluidity and Plasticity, New York (1922).

  25. R. B. Bird, G. C. Dai, and B. J. Yarusso, “The rheology and flow of viscoplastic materials,” Rev. Chem. Eng., 1, No. 1, 1–70 (1982).

    Google Scholar 

  26. S. H. Bittleston and O. Hassager, “Flow of viscoplastic fluids in a rotating concentric annulus,” J. Non-Newton. Fluid Mech., 42, No. 1–2, 19–36 (1992).

    Article  MATH  Google Scholar 

  27. A. Borrelli, M. C. Patria, E. Piras, “Spatial decay estimates in the problem of entry flow for a Bingham fluid filling a pipe,” Math. Comput. Model., 40, No. 1–2, 23–42 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Bostan and P. Hild, “Starting flow analysis for Bingham fluids,” Nonlinear Anal., 64, No. 5, 1119–1139 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. A. Bostandjyan and A. M. Stolin, “Complex shear of a viscous-plastic fluid between two parallel plates,” In: Theor. Instrum. Rheology [in Russian], Minsk (1970), pp. 107–118.

  30. M. A. Brutyan and P. L. Krapivskii, “Hydrodynamics of non-Newtonian fluids,” In: Progress in Science and Technology, Series on Complex and Special Sections of Mechanics [in Russian], 4, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (1991), pp. 3–98.

    Google Scholar 

  31. R. Bukowski and W. Wojewòdzki, “Dynamic buckling of viscoplastic spherical shell,” Int. J. Solids Struct., 20, No. 8, 761–776 (1984).

    Article  MATH  Google Scholar 

  32. R. Bunoiu and S. Kesavan, “Asymptotic behavior of a Bingham fluid in thin layers,” J. Math. Anal. Appl., 293, No. 2, 405–418 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. L. Burgess and S. D. R. Wilson, “Spin-coating of a viscoplastic material,” Phys. Fluids, 8, No. 9, 2291–2297 (1996).

    Article  MATH  Google Scholar 

  34. T. J. Burns, “Similarity and bifurcation in unstable viscoplastic solids,” SIAM J. Appl. Math., 49, No. 1, 314–329 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Camenschi and N. Cristescu, and N. Şandru, “Development in high-speed viscoplastic flow through conical converging dies,” Trans. ASME. J. Appl. Mech., 50, No. 3, 566–570 (1983).

    Article  MATH  Google Scholar 

  36. F. Caton, “Linear stability of circular Couette flow of inelastic viscoplastic fluids,” J. Non-Newton. Fluid Mech., 134, No. 1–3, 148–154 (2006).

    Article  MATH  Google Scholar 

  37. O. Cazacu and I. R. Ionescu, “Compressible rigid viscoplastic fluids,” J. Mech. Phys. Solids, 54, No. 8, 1640–1667 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Cazacu, I. R. Ionescu, and T. Perrot, “Steady-state flow of compressible rigid-viscoplastic media,” Int. J. Eng. Sci., 44, No. 15–16, 1082–1097 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Chatzimina, G. C. Georgiou, I. Argyropaidas, E. Mitsoulis, and R. R. Huilgol, “Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping times,” J. Non-Newton. Fluid Mech., 129, No. 3, 117–127 (2005).

    Article  MATH  Google Scholar 

  40. M. Chatzimina, C. Xenophontos, G. C. Georgiou, I. Argyropaidas, E. Mitsoulis, “Cessation of annular Poiseuille flows of Bingham plastics,” J. Non-Newton. Fluid Mech., 142, 135–142 (2007).

    Article  MATH  Google Scholar 

  41. E. A. Cheblakova, “Modeling of convection in domains with free boundaries,” Vychisl. Tekhnol., 5, No. 6, 87–98 (2000).

    MathSciNet  MATH  Google Scholar 

  42. A. D. Chernyshov, “On flows of a viscous-plastic medium with nonlinear viscosity in a wedge,” Zh. Prikl. Mekh. Tekh. Fiz., 4, 152–154 (1966).

    Google Scholar 

  43. A. D. Chernyshov, “Steady-state flows of a viscous-plastic medium between two coaxial cones and inside a dihedral angle,” Zh. Prikl. Mekh. Tekh. Fiz., 5, 93–99 (1970).

    Google Scholar 

  44. A. D. Chernyshov, “On the motion of a viscous-plastic medium inside a dihedral angle,” Prikl. Mekh., 7, No. 1, 120–124 (1971).

    Google Scholar 

  45. R. P. Chhabra and P. H. T. Uhlherr, “Static equilibrium and motion of spheres in viscoplastic liquids,” In: Encyclopedia of Fluid Mechanics. Rheology and Non-Newtonian Flows, 7, Gulf. Publ., Houston (1988), pp. 611–633.

    Google Scholar 

  46. E. V. Chizhonkov, Relaxation Methods for Solving Saddle Problems [in Russian], Izd. Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow (2002).

    Google Scholar 

  47. D. Cioranescu, “On the flow of a Bingham fluid passing through an electric field,” Internat. J. Non-Linear Mech., 38, No. 3, 287–304 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Cochard and C. Ancey, “Experimental investigation of the spreading of viscoplastic fluids on inclined planes,” J. Non-Newton. Fluid Mech., 158, No. 1–3, 73–84 (2009).

    Article  Google Scholar 

  49. P. L. Dai and J. Z. Dai, “The Gal¨erkin finite element method for Bingham-fluid,” Numer. Math. J. Chinese Univ., 24, No. 1, 31–36 (2002).

    MathSciNet  MATH  Google Scholar 

  50. I. Daprà and G. Scarpi, “Start-up of channel-flow of a Bingham fluid initially at rest,” Math. Appl., 15, No. 2, 125–135 (2004).

    MATH  Google Scholar 

  51. I. Daprà and G. Scarpi, “Start-up flow of a Bingham fluid in a pipe,” Meccanica, 40, No. 1, 49–63 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  52. M. R. Davidson, N. H. Khan, and Y. L. Yeow, “Collapse of a cylinder of Bingham fluid,” In: Proc. Internat. Conf. on Computat. Techniques and Applications, Canberra, Aust. Math. Soc., 499–517 (2000).

  53. E. J. Dean and R. Glowinski, “Operator-splitting methods for the simulation of Bingham viscoplastic flow,” Chinese Ann. Math. Ser. B, 23, No. 2, 187–204 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  54. E. J. Dean, R. Glowinski, and G. Guidoboni, “On the numerical simulation of Bingham viscoplastic flow: old and new results,” J. Non-Newton. Fluid Mech., 142, No. 2–3, 36–62 (2007).

    Article  MATH  Google Scholar 

  55. N. Dubash, N. J. Balmforth, A. C. Slim, S. Cochard, “What is the final shape of a viscoplastic slump?,” J. Non-Newton. Fluid Mech., 158, No. 1–3, 91–100 (2009).

    Article  Google Scholar 

  56. Z. Dursunkaya and S. Nair, “Solidification of a finite medium subject to a periodic variation of boundary temperature,” Trans. ASME. J. Appl. Mech., 70, No. 5, 633–637 (2003).

    Article  MATH  Google Scholar 

  57. H. C. Elman and G. H. Golub, “Inexact and preconditioned Uzawa algorithms for saddle point problems,” SIAM J. Numer. Anal., 31, 1645–1661 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  58. J. D. Evans and J. R. King, “Asymptotic results for the Stefan problem with kinetic undercooling,” Quart. J. Mech. Appl. Math., 53, No. 3, 449–473 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  59. J. D. Evans and J. R. King, “The Stefan problem with nonlinear kinetic undercooling,” Quart. J. Mech. Appl. Math., 56. No 1, 139–161 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  60. Chun Fan, “Flow of viscoplastic fluid on a rotating disk,” Appl. Math. Mech., 15, No. 5, 447–453 (1994).

    Article  MATH  Google Scholar 

  61. A. Fasano and M. Primicerio, “Viscoplastic impact of a rod on a wall,” Bol. Unione Mat. Ital., 11, No. 3, 531–553 (1975).

    MathSciNet  MATH  Google Scholar 

  62. Z. C. Feng and L. G. Leal, “Nonlinear bubble dynamics,” Annu. Rev. Fluid Mech., 29, 201–243 (1997).

    Article  MathSciNet  Google Scholar 

  63. B. Finzi, “Rotazioni plastiche,” Atti Reale Accad. Naz. dei Lincei, 23, No. 9, 676–681 (1936).

    MATH  Google Scholar 

  64. B. Finzi, “Dispersione di un vortice in un mezzo plastico,” Atti Reale Accad. Naz. dei Lincei, 23, No. 10, 733–739 (1936).

    MATH  Google Scholar 

  65. A. L. Florence, “Buckling of viscoplastic cylindrical shells due to impulsive loading,” AIAA J., 6, No. 3, 532–537 (1968).

    Article  Google Scholar 

  66. A. L. Florence and G. R. Abrahamson, “Critical velocity for collapse of viscoplastic cylindrical shells without buckling,” Trans. ASME. J. Appl. Mech., 44, No. 1, 89–94 (1977).

    Article  MATH  Google Scholar 

  67. L. Formaggia, D. Lamponi, and A. Quarteroni, “One-dimensional models for blood flow in arteries,” J. Eng. Math., 47, No. 3–4, 251–276 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, North-Holland, Amsterdam (1983).

    MATH  Google Scholar 

  69. G. B. Freustehter, A. I. Nakorchevskii, V. V. Sinitsin, and E. I. Tsetsoho, “Loss of stability of the laminar form of motion in flows of plastic lubricants in capillaries,” Prikl. Reol., 2, 135–146 (1970).

    Google Scholar 

  70. I. A. Frigaard, S. D. Howison, and I. J. Sobey, “On the stability of Poiseuille flow of a Bingham fluids,” J. Fluid Mech., 263, 133–150 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  71. I. A. Frigaard and C. Nouar, “On three-dimensional linear stability of Poiseuille flow of Bingham fluids,” Phys. Fluids, 15, No. 10, 2843–2851 (2003).

    Article  MathSciNet  Google Scholar 

  72. I. A. Frigaard and C. Nouar, “On the usage of viscosity regularization methods for visco-plastic fluids flow computation,” J. Non-Newton. Fluid Mech., 127, No. 1, 1–26 (2005).

    Article  MATH  Google Scholar 

  73. I. A. Frigaard and O. Scherzer, “The effects of yield stress variation on uniaxial exchange flows of two Bingham fluids in a pipe,” SIAM J. Appl. Math., 60, No. 6, 1950–1976 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  74. I. A. Frigaard, O. Scherzer, and G. Sona, “Uniqueness and non-uniqueness in the steady displacement of two visco-plastic fluids,” ZAMM (Z. Angew. Math. Mech.), 81, No. 2, 99–118 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  75. L. Fusi and A. Farina, “An extension of the Bingham model to the case of an elastic core,” Adv. Math. Sci. Appl., 13, No. 1, 113–163 (2003).

    MathSciNet  MATH  Google Scholar 

  76. L. Fusi and A. Farina, “Modeling of Bingham-like fluids with deformable core,” Comput. Math. Appl., 53, No. 3–4, 583–594 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  77. A. N. Gaipova, “Finite-difference method of solving the problem on the impact of a viscousplastic rod against a rigid barrier,” Inzh. Zh. Mekh. Tverd. Tela, 1, 128–130 (1968).

    Google Scholar 

  78. H. M. Gamsaev, “Modeling of the motion of a single particle in an ascending flow of a viscousplastic fluid,” Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26, No. 2, 148–153 (2006).

    Google Scholar 

  79. F. A. Garifullin and K. Z. Halimov, “On the hydrodynamical stability of non-Newtonian media,” Prikl. Mekh., 10, No. 8, 3–25 (1974).

    Google Scholar 

  80. G. T. Gasanov, N. A. Gasanzade, and A. H. Mirzadjanzade, “Squeezing out of a viscous-plastic layer by circular plates,” Zh. Prikl. Mekh. Tekh. Fiz., 5, 88–90 (1961).

    Google Scholar 

  81. D. V. Georgievskii, “A linearized problem on the stability of viscous-plastic bodies with an arbitrary inner relation,” Vestn. MGU, Ser. 1. Mat. Mekh., 6, 65–67 (1992).

    Google Scholar 

  82. D. V. Georgievskii, “Stability of two- and three-dimensional viscous-plastic flows and the generalized Squire theorem,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 117–123 (1993).

  83. D. V. Georgievskii, “The collapse of a cavitational bubble in a nonlinearly viscous and viscousplastic media,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 2, 181–184 (1994).

    Google Scholar 

  84. D. V. Georgievskii, “Sufficient integral estimates of the stability of the viscous-plastic shear,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 124–131 (1994).

  85. D. V. Georgievskii, “Viscous-Plastic Couette–Taylor flows: Distribution of rigid zones and stability,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 101–106 (1994).

  86. D. V. Georgievskii, “Stability of nonstationary shear of a viscous-plastic half-plane with a tangential break along the boundary,” Vestn. MGU, Ser. 1. Mat. Mekh., 3, 65–72 (1996).

    Google Scholar 

  87. D. V. Georgievskii, “Estimates of the stability of a nonstationary deformation of viscous-plastic bodies in planar domains,” Dokl. Ross Akad. Nauk, 346, No. 4, 471–473 (1996).

    MathSciNet  Google Scholar 

  88. D. V. Georgievskii, “Integral estimates of the stability of nonstationary deformation of threedimensional bodies with complex rheology,” Dokl. Ross Akad. Nauk, 356, No. 2, 196–198 (1997).

    MathSciNet  Google Scholar 

  89. D. V. Georgievskii, “The method of integral relations in stability problems for nonlinear flows with kinematics defined at the boundary,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 102–113 (1997).

  90. D. V. Georgievskii, “Stability of deformation processes according to measure sets with respect to given perturbations classes,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 69–92 (1997).

  91. D. V. Georgievskii, “General estimates of development of perturbations in three-dimensional nonhomogeneous scalar nonlinear flows,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 90–97 (1998).

  92. D. V. Georgievskii, Stability of Deformation Processes of Viscous-Plastic Bodies [in Russian], URSS, Moscow (1998).

    Google Scholar 

  93. D. V. Georgievskii, “Stability problem for quasilinear flows with respect to perturbations of the strengthening function,” Zh. Prikl. Mat. Mekh., 63, Issue 5, 826–832 (1999).

    MathSciNet  Google Scholar 

  94. D. V. Georgievskii, “Some non-one-dimensional problems of viscous-plasticity: Rigid zones and stability (review),” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 61–78 (2001).

  95. D. V. Georgievskii, “Tensor nonlinear effects in the isothermal deformation of continuous media,” Usp. Mech., 1, No. 2, 150–176 (2002).

    MathSciNet  Google Scholar 

  96. D. V. Georgievskii, “Small perturbations of nondeformed states in media with yield stress,” Dokl. Ross Akad. Nauk, 392, No. 5, 634–637 (2003).

    MathSciNet  Google Scholar 

  97. D. V. Georgievskii, “Diffusion of the break of the tangential stress at the boundary of a viscousplastic half-plane,” Zh. Prikl. Mat. Mekh., 70, No. 5, 884–892 (2006).

    MathSciNet  Google Scholar 

  98. D. V. Georgievskii, “Perturbations of material functions in defining relations of ideal- and viscous-plastic media,” In: Elasticity and Nonelasticity [in Russian], URSS, Moscow (2006), pp. 35–43.

    Google Scholar 

  99. D. V. Georgievskii, “Perturbations of flows of noncompressible nonlinearly viscous and viscousplastic fluids generated by variations of material functions,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 55–62 (2007).

  100. D. V. Georgievskii, “Generalized diffusion of the vortices: Self-similarity and the Stefan problem,” Contemp. Math. Appl., 62, 28–46 (2009).

    Google Scholar 

  101. D. V. Georgievskii, “Viscoplastic stratified composites: shear flows and stability,” In: Proc. NATO ASI “Mechanics of Composite Materials and Structures”. III. Troia (Portugal), 1998, NATO ASI, Lisboa (1998), pp. 315–324.

    Google Scholar 

  102. D. V. Georgievskii, “Isotropic nonlinear tensor functions in the theory of constitutive relations,” J. Math. Sci., 112, No. 5, 4498–4516 (2002).

    Article  MathSciNet  Google Scholar 

  103. D. V. Georgievskii, “Perturbation of constitutive relations in tensor nonlinear materials,” Mech. Adv. Mater. Struct., 15, No. 6, 528–532 (2008).

    Article  Google Scholar 

  104. D. V. Georgievskii, “Applicability of the Squire transformation in linearized problems on shear stability,” Russian J. Math. Phys., 16, No. 4, 478–483 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  105. D. V. Georgievskii and A. V. Zhdanova, “Asymptotics in the problem of starting of deformation and complete filling of a gas bubble,” Dokl. Ross Akad. Nauk, 399, No. 2, 188–191 (2004).

    Google Scholar 

  106. D. V. Georgievskii and A. V. Zhdanova, “On starting of deformation and complete filling of a spherical gas bubble in media with yield stress,” Vestn. MGU, Ser. 1. Mat. Mekh., 4, 39–45 (2005).

    MathSciNet  Google Scholar 

  107. D. V. Georgievskii and D. M. Klimov, “Energy analysis of the development of kinematic perturbations in weakly nonhomogeneous viscous fluids,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 2, 56–67 (2000).

    MathSciNet  Google Scholar 

  108. D. V. Georgievskii, D. M. Klimov, and A. G. Petrov, “ Problems of inertialess flows of weakly nonhomogeneous viscous media,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 3, 17–25 (2003).

  109. D. V. Georgievskii and N. N. Okulova, “On viscous-plastic von Karman flows,” Vestn. MGU, Ser. 1. Mat. Mekh., 5, 45–49 (2002).

    MathSciNet  Google Scholar 

  110. G. Z. Gershuni and E. M. Zhukhovitskii, “On the convective stability of a Bingham fluid,” Dokl. Akad. Nauk SSSR, 208, No. 2, 63–65 (1973).

    Google Scholar 

  111. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York (1984).

    MATH  Google Scholar 

  112. A. V. Gnoevoi, D. M. Klimov, A. G. Petrov, and V. M. Chesnokov, “Flows of viscous-plastic media between parallel circular plates at their coming together and receding,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 1, 9–17 (1996).

    Google Scholar 

  113. A. V. Gnoevoi, D. M. Klimov, A. G. Petrov, and V. M. Chesnokov, “Planar flows of viscousplastic media in narrow channels with deformable walls,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 2, 23–31 (1996).

    Google Scholar 

  114. A. V. Gnoevoi, D. M. Klimov, A. G. Petrov, and V. M. Chesnokov, “On a method of the investigation of spatial flows of viscous-plastic media,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 4, 150–158 (1993).

    Google Scholar 

  115. A. V. Gnoevoi, D. M. Klimov, and V. M. Chesnokov, Flows of Viscous-Plastic Media in Channels and Cavities with Changing Forms of Their Walls (Elements of Theory and Technical Application) [in Russian], Poligrafservis, Moscow (1995).

    Google Scholar 

  116. A. V. Gnoevoi, D. M. Klimov, and V. M. Chesnokov, “On the theory of flows of Bingham media,” Preprint IPM RAN No. 626, Moscow (1998).

  117. A. V. Gnoevoi, D. M. Klimov, and V. M. Chesnokov, “On a planar flow of Bingham media,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 63–73 (2001).

  118. A. V. Gnoevoi, D. M. Klimov, and V. M. Chesnokov, “On flow equations for Bingham media,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 108–114 (2001).

  119. A. V. Gnoevoi, D. M. Klimov, and V. M. Chesnokov, Foundations of the Theory of Flows of Bingham Media [in Russian], Fizmatlit, Moscow (2004).

    Google Scholar 

  120. R. V. Goldshtein and V. M. Entov, Qualitative Methods in Mechanics of Continuous Media [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  121. A. L. Gonor and S. N. Kutsaev, “Collisions of a viscous-plastic body against a rigid barrier at an arbitrary contact angle,” Nauch. Tr. Vsesoyuz. Zaoch. Mash. Inst., 38, 62–70 (1976).

    Google Scholar 

  122. H. R. W. Gottlieb, “Exact solution of a Stefan problem in a nonhomogeneous cylinder,” Appl. Math. Lett., 15, No. 2, 176–172 (2002).

    Article  MathSciNet  Google Scholar 

  123. T. B. Grankina, “Numerical methods of solving the one-phase Stefan problem,” Dynam. Contin. Media, 118, 16–20, (2001).

    MATH  Google Scholar 

  124. V. G. Grigoriev, S. Z. Dunin, and V. V. Surkov, “Closing of a spherical pore in a viscous-plastic material,” Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 1, 199–201 (1981).

  125. P. P. Grinevich and M. A. Olshanskii, “An iterative method for the Stokes-type problem with variable viscosity,” SIAM J. Sci. Comput., 31, No. 5, 3959–3978 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  126. Yu. V. Gurkov and A. G. Petrova, “Numerical solution of the Stefan problem with nonconstant temperature of phase transition,” Zh. Prikl. Mekh. Tekh. Fiz., 22, 105–112 (1996).

    MathSciNet  Google Scholar 

  127. A. M. Gutkin, “Flow of a viscous-plastic disperse system on a rotating disk,” Kolloid. Zh., 22, No. 5, 573–575 (1960).

    Google Scholar 

  128. A. M. Gutkin, “Slow flow of a viscous-plastic disperse medium in conic and planar diffusers at small aperture,” Kolloid. Zh., 23, No. 3, 352 (1961).

    Google Scholar 

  129. A. M. Gutkin, “Flow of a viscous-plastic disperse system on a rotating cone,” Kolloid. Zh., 24, No. 3, 283–288 (1962).

    Google Scholar 

  130. O. N. Dementiev and E. V. Karas’, “Stability of extension of a restangular plate,” Vestn. Chelyabinsk. Univ. Ser. Mat. Mekh., No. 1, 121–128 (1991).

  131. A. G. Dzhafarli, “Nonlinear viscous-plastic waves in threads in their spatial motion,” Dokl. Akad. Nauk AzSSR, 42, No. 1, 16–19 (1986).

    MATH  Google Scholar 

  132. A. S. Dudko, “Influence of a finite-size sink on the rotation of a linear viscous-plastic medium,” In: Hydromechanics [in Russian], Naukova Dumka, Kiev (1989), 59, pp. 44–49.

    Google Scholar 

  133. D. V. Evdokimov and A. A. Kochubey, “Application of boundary-element methods for solving the Stefan problem in the case of slow phase transitions,” Vestn. Khar’kov. Univ., 590, 26–31 (2003).

    Google Scholar 

  134. G. S. Erganov and A. K. Egorov, “The stability of the viscous-plastic flow of thick-walled ball,” Izv. Akad. Nauk KazSSR, Ser. Fiz. Mat., No. 1, 17–23 (1984).

  135. G. S. Erzhanov, A. K. Egorov, and G. Sh. Zhantaev, “Stability of a viscous-plastic flow of a heavy stratified medium,” Izv. Akad. Nauk KazSSR, Ser. Fiz. Mat., No. 1, 17–23 (1981).

  136. R. W. Hanks, “The laminar-turbulent transition for fluids with a yield stress,” AIChE J., 9, No. 3, 306–309 (1963).

    Article  Google Scholar 

  137. R. W. Hanks and B. L. Ricks, “Laminar-turbulent transition in flow of pseudoplastic fluids with yield stresses,” J. Hydronaut., 8, No. 4, 163–166 (1974).

    Article  Google Scholar 

  138. J. W. He and R. Glowinski, “Steady Bingham fluid flow in cylindrical pipes: a time-dependent approach to the iterative solution,” Numer. Linear Algebra Appl., 7, No. 6, 381–428 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  139. P. Hild, “The mortar finite element method for Bingham fluids,” M2AN Math. Model. Numer. Anal., 35, No. 1, 153–164 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  140. P. Hild, I. R. Ionescu, T. Lachand-Robert, and I. Roşca, “The blocking of an inhomogeneous Bingham fluid. Applications to landslides,” M2AN Math. Model. Numer. Anal., 36, No. 6, 1013–1026 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  141. A. J. Hogg and G. P. Matson, “Slumps of viscoplastic fluids on slopes,” J. Non-Newton. Fluid Mech., 158, No. 1–3, 101–112 (2009).

    Article  Google Scholar 

  142. C. K. Hsieh, “Exact solution of a Stefan problems related to a moving line heat source in a quasi-stationary state,” Trans. ASME. J. Heat Transfer., 117, No. 4, 1076–1078 (1995).

    Article  Google Scholar 

  143. C. K. Huen, I. A. Frigaard, and D. M. Martinez, “Experimental studies of multi-layer flows using a visco-plastic lubricant,” J. Non-Newton. Fluid Mech., 142, No. 1–3, 150–161 (2007).

    Article  MATH  Google Scholar 

  144. R. R. Huilgol, “On kinematic conditions affecting the existence and nonexistence of a moving yield surface in unsteady unidirectional flows of Bingham fluids,” J. Non-Newton. Fluid Mech., 123, No. 2–3, 215–221 (2004).

    Article  MATH  Google Scholar 

  145. R. R. Huilgol, “A systematic procedure to determine the minimum pressure gradient required for the flow of viscoplastic fluids in pipes of symmetric cross-sections,” J. Non-Newton. Fluid Mech., 136, No. 2–3, 140–146 (2006).

    Article  MATH  Google Scholar 

  146. R. R. Huilgol and Z. You, “Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel–Bulkley fluids,” J. Non-Newton. Fluid Mech., 128, No. 2–3, 126–143 (2005).

    Article  MATH  Google Scholar 

  147. R. R. Huilgol and Z. You, “Prolegomena to variational inequalities and numerical schemes for compressible viscoplastic fluids,” J. Non-Newton. Fluid Mech., 158, No. 2, 113–126 (2009).

    Article  Google Scholar 

  148. I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Clarendon Press; Oxford Univ. Press, New York (1993).

    MATH  Google Scholar 

  149. A. A. Il’yushin, “Deformation of viscous-plastic bodies,” Uch. Zap. MGU. Mech., No. 39, 3–81 (1940).

  150. A. A. Il’yushin, “Stability of plates and shells over the elasticity limit,” Zh. Prikl. Mat. Mekh., 8, Issue 5, 337–360 (1944).

  151. A. A. Il’yushin, Plasticity. Elastoplastic Deformations [in Russian], Gostekhizdat, Moscow–Leningrad, (1944).

    Google Scholar 

  152. A. A. Il’yushin, Plasticity. Fundamentals of General Mathematical Theory [in Russian], Izd. Akad. Nauk. SSSR, Moscow, (1963).

    Google Scholar 

  153. A. A. Il’yushin, Mechanics of Continuous Media [in Russian], MGU, Moscow, (1990).

    Google Scholar 

  154. A. A. Il’yushin, “Dynamics,” Vestn. MGU, Ser. 1. Mat. Mekh., 3, 79–87 (1994).

    MathSciNet  Google Scholar 

  155. A. A. Il’yushin, “On the problem on viscous-plastic flows of materials,” In: Collected Papers. Vol. 1 [in Russian], Fizmatlit, Moscow (2003), pp. 115–131.

    Google Scholar 

  156. A. Yu. Ishlinskii, “On the stability of a viscous-plastic flow of a circular plate,” Zh. Prikl. Mat. Mekh., 7, No. 6, 405–412 (1943).

    Google Scholar 

  157. A. Yu. Ishlinskii, “On the stability of a viscous-plastic flow of a band and a circular rod,” Zh. Prikl. Mat. Mekh., 7, No. 2, 109–130 (1943).

    Google Scholar 

  158. A. Yu. Ishlinskii and G. I. Barenblatt, “On the impact of a viscous-plastic rod against a rigid barrier,” Dokl. Akad. Nauk SSSR, 144, No. 4, 734–737 (1962).

    Google Scholar 

  159. A. Yu. Ishlinskii and G. P. Sleptsova, “On the impact of a viscous-plastic rod against a rigid barrier,” Prikl. Mekh., 1, No. 2, 1–9 (1965).

    Google Scholar 

  160. S. A. Jenekhe and S. B. Schuldt, “Flow and film thickness of Bingham plastic liquids on a rotating disk,” Chem. Eng. Commun., 33, No. 1–4, 135–147 (1985).

    Article  Google Scholar 

  161. P. Jie and K. Q. Zhu, “Drag force of interacting coaxial spheres in viscoplastic fluids,” J. Non-Newton. Fluid Mech., 135, No. 2–3, 83–91 (2006).

    Article  MATH  Google Scholar 

  162. L. Jossic and A. Magnin, “Drag of an isolated cylinder and interactions between two cylinders in yield stress fluids,” J. Non-Newton. Fluid Mech., 164, No. 1–3, 9–16 (2009).

    Article  Google Scholar 

  163. I. A. Kaliev, “Global solvability of one problem that models a phase transition gas–rigid solid,” Dynam. Contin. Media, 116, 36–41, (2000).

    MathSciNet  MATH  Google Scholar 

  164. J. M. Kelly and T. Wierzbicki, “Motion of a circular viscoplastic plate subject to projectile impact,” ZAMP, 18, No. 2, 236–246 (1967).

    Article  MATH  Google Scholar 

  165. I. V. Keppen and S. Yu. Rodionov, Extension and Compression of Plates made of Nonlinear Viscous-Plastic Materials. Elasticity and Inelasticity [in Russian], MGU, Moscow (1987).

    Google Scholar 

  166. S. Kesavan, “On the asymptotic behavior of a Bingham fluid in thin layer,” In: Analysis and Applications, Allied Publ., New Delhi (2004), pp. 57–70.

  167. Inwon C. Kin, “Uniqueness and existence results on the Hele-Shaw and the Stefan problems,” Arch. Ration. Mech. Anal., 168, No. 4, 299–328 (2003).

    Article  MathSciNet  Google Scholar 

  168. L. P. Kholpanov, S. E. Zakiev, and V. A. Fedotov, “Neumann–Lam´e–Clapeyron–Stefan problem and the solution by the method of fractional differentiation,” Teor. Fundam. Khim. Tehnol., 37, No. 2, 128–137 (2003).

    Google Scholar 

  169. I. A. Kiyko, Theory of Viscous-Plastic Flows. Elasticity and Inelasticity [in Russian], URSS, Moscow (2006).

    Google Scholar 

  170. A. H. Kim and M. P. Volarovich, “Planar problem on the motion of a viscous-plastic disperse system between two planes with an acute angle between them,” Kolloid. Zh., 22, No. 2, 186–194 (1960).

    Google Scholar 

  171. D. M. Klimov and D. V. Georgievskii, “Evolution of a weak initial inhomogeneity (start of mixing) in a continuous medium,” In: Actual Problems of Mechanics. Mechanics of Deformable Rigid Bodies [in Russian], Nauka, Moscow (2009), pp. 352–370.

    Google Scholar 

  172. D. M. Klimov and A. G. Petrov, “Analytical solutions of the boundary-value problem of nonstationary flow of viscoplastic medium between two plates,” Arch. Appl. Mech., 70, No. 1, 3–16 (2000).

    Article  MATH  Google Scholar 

  173. D. M. Klimov, S. V. Nesterov, L. D. Akulenlo, D. V. Georgievskii, and S. A. Kumakshev, “Flows of viscous-plastic media with small yield stress in planar confusers,” Dokl. Ross. Akad. Nauk, 375, No. 4, 37–41 (2000).

    Google Scholar 

  174. D. M. Klimov, S. V. Nesterov, L. D. Akulenlo, D. V. Georgievskii, and S. A. Kumakshev, “Viscous-plastic flows in confusers,” Izv. Vuzov. Sev.-Kavk. Reg. Estestv. Nauki, Special Issue, 89–92 (2001).

  175. D. M. Klimov, A. G. Petrov, and D. V. Georgievskii, Viscous-Plastic Flows: Dynamical Chaos, Stability, and Confusion [in Russian], Nauka, Moscow (2005).

    Google Scholar 

  176. O. R. Kozyrev and Yu. A. Stepaniants, “Method of integral relations in the linear theory of hydrodynamical stability,” In: Progress in Science and Technology, Series on Mechanics of Fluid and Gas [in Russian], 25, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (1991), pp. 3–89.

    Google Scholar 

  177. Yu. Ya. Kolbovskii, N. P. Shanin, and V. N. Khranin, “On flows of non-Newtonian fluids in conic and planar diffusers,” Nauch. Tr. Yaroslav. Tekhnol. Inst., 31, 102–106 (1972).

    Google Scholar 

  178. V. L. Kolmogorov and G. L. Kolmogorov, “Flows of viscous-plastic lubricants for draging in the regime of hydrodynamical friction,” Izv. Vuzov. Black Metal., No. 2, 67–72 (1968).

    MathSciNet  Google Scholar 

  179. S. V. Konev, “The hydrodynamical isothermal problem of rolling of cylindrical surfaces with sliding under plastic lubricants,” In: Friction and Wear Problems [in Russian], Tekhnika, Kiev, 30, (1986), pp. 16–18

    Google Scholar 

  180. L. I. Kotova, “The theory of rolling of a cylinder along a surface covered by a layer of viscousplastic lubricant,” Zh. Tekh. Fiz., 27, No. 7, 1540–1557 (1957).

    Google Scholar 

  181. L. I. Kotova and B. V. Deryagin, “The theory of rolling of a cylinder along a surface covered by a layer of plastic lubricant,” Zh. Tekh. Fiz., 27, No. 6, 1261–1271 (1957).

    Google Scholar 

  182. N. V. Krasnoshchek, “Stefan problem for a degenerate system of equations,” Dopov. Nats. Akad. Nauk Ukr., 4, 29–32 (1999).

    MathSciNet  Google Scholar 

  183. S. N. Kruzhkov, “On some problems with unknown boundaries for the heat equation,” Zh. Prikl. Mat. Mekh., 31, No. 6, 1009–1020 (1967).

    MathSciNet  Google Scholar 

  184. S. N. Krugkov, “On one class of problems with the unknown boundary for the heat conductivity equation,” Dokl. Akad. Nauk SSSR, 178, No. 5, 1036–1038 (1968).

    Google Scholar 

  185. P. A. Kuzin, “The longitudinal impact of a viscous-plastic rod,” Inzh. Zh. Mekh. Tverd. Tela, 5, 94–97 (1968).

    Google Scholar 

  186. A. A. Lacey and L. A. Herraiz, “Macroscopic models for melting derived from averaging microscopic Stefan problems. I. Simple geometries with kinetic undercooling of surface tension,” Eur. J. Appl. Math., 11, No. 2, 153–169 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  187. O. A. Ladyzhenskaya and G. A. Seregin, “On global stability of the two-dimensional viscoplastic flows,” In: Jyv¨askyl¨a – St. Petersburg Seminar on Partial Differ. Equat. and Numer. Meth. Rept., 56, Univ. Jyväskylä (1993), pp. 43–52.

  188. O. A. Ladyzhenskaya and G. A. Seregin, “On semigroups generated by initial-boundary value problems describing two-dimensional viscoplastic flows,” Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, 164, 99–123 (1995).

    MathSciNet  Google Scholar 

  189. M. P. Landry, I. A. Frigaard, and D. M. Martinez, “Stability and instability of Taylor–Couette flows of a Bingham fluid,” J. Fluid Mech., 560, 321–353 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  190. C. Lanos and A. Dustens, “Rhéométrie des écoulements entre plateaux parallèeles: Réflexions,” Eur. J. Mech. Engng., 39, No. 2, 77–89 (1994).

    Google Scholar 

  191. B. I. Lapushina and A. Kh. Kim, “Approximate solution of the problem on a stationary isothermal flow of a viscous-plastic medium in a planar parabolic diffuser by the variational method,” Teor. Prikl. Mekh, 1, 17–20 (1975).

    Google Scholar 

  192. N. V. Lazovskaya, “The study of kinematics of flows of disperse systems (peat, consistent lubricants, etc.) in conic nozzles,” Kolloid. Zh., 11, No. 2, 77–83 (1949).

    Google Scholar 

  193. E. V. Lenskii, “On group properties of equations of motion of nonlinear viscous-plastic media,” Vestn. MGU, Ser. 1. Mat. Mekh., 5, 116–125 (1966).

    Google Scholar 

  194. E. A. Leonova, “Group classification and invariant solutions of flow equations and heat-change equations for viscous-plastic media,” Zh. Prikl. Mekh. Tekh. Fiz., 4, 3–18 (1966).

    Google Scholar 

  195. E. A. Leonova, “Invariant properties of equations of termoviscoplasticity with incomplete information on proprties of the medium,” In: Elasticity and Nonelasticity [in Russian], 1, MGU, Moscow (1993), pp. 35–43.

    Google Scholar 

  196. Y. M. Leroy and A. Molinari, “Stability of steady states in shear zones,” J. Mech. Phys. Solids, 40, No. 1, 181–212 (1992).

    Article  Google Scholar 

  197. N. P. Leshchii, “Transition from laminar to turbulent regimes in flows of nonlinear viscous-plastic fluids,” In: Hydraulics and hydrotechnics [in Russian], 31, Tekhnika, Kiev (1981), pp. 81–86.

  198. A. I. Litvinov, “Semiempirical description of turbulence of viscous-plastic fluids,” Izv. Acad. Nauk UzSSR, Ser. Tekh., No. 5, 46–50 (1975).

  199. V. V. Lokhin and L. I. Sedov, “Nonlinear tensor functions of some tensor arguments,” Zh. Prikl. Mat. Mekh., 27, No. 3, 393–417 (1975).

    MathSciNet  Google Scholar 

  200. O. B. Magomedov and B. E. Pobedrya, “Some problems of viscoelasticplastic flows,” In: Elasticity and Nonelasticity [in Russian], 4, MGU, Moscow (1993), pp. 152–169.

    Google Scholar 

  201. A. A. Mamakov, N. V. Tyabin, and G. V. Vinogradov, “Application of the similarity theory to calculation of flows of plastic lubricants in pipes,” Kolloid. Zh., 21, No. 2, 208–215 (1959).

    Google Scholar 

  202. A. E. Mamontov, “Existence of global solutions of multi-dimensional equations of compressible Bingham fluids,” Mat. Zametki, 82, No. 4, 560–577 (2007).

    Article  MathSciNet  Google Scholar 

  203. S. Matsumoto, Y. Takashima, T. Kamlya, A. Kayano, and Y. Ohta, “Film thickness of a Bingham liquid on a rotating disk,” Industr. Eng. Chem. Fundam., 21, No. 3, 198–202 (1982).

    Article  Google Scholar 

  204. R. M. Matveevskii, V. L. Lahshi, and I. A. Buyanovskii, Lubricants: Antifriction and Antiwear Properties. Tests Methods [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  205. A. K. Mekhtiev, “On compression of a cylindrical pattern by impact under nonlinear dependence of the stress on the deformation velocity,” In: Static and Dynamic Problems of Theory of Elasticity and Plasticity [in Russian], Izd. AzSSR, Baku (1968), pp. 90–95.

    Google Scholar 

  206. P. R. Mendes, M. F. Naccache, P. R. Varges, and F. H. Marchesini, “Flow of viscoplastic liquids through axisymmetric expansions — contractions,” J. Non-Newton. Fluid Mech., 142, No. 1–3, 207–217 (2007).

    Article  MATH  Google Scholar 

  207. O. Merkak, L. Jossic, and A. Magnin, “Spheres and interactions between spheres moving at very low velocities in a yield stress fluid,” J. Non-Newton. Fluid Mech., 133, No. 2–3, 99–108 (2006).

    Article  MATH  Google Scholar 

  208. C. Métivier and C. Nouar, “On linear stability of Rayleigh–Bénard Poiseuille flow of viscoplastic fluids,” Phys. Fluids, 20, No. 10, 104101/1–104101/14 (2008).

  209. C. Métivier and C. Nouar, “Linear stability of the Rayleigh–Bénard Poiseuille flow for thermodependent viscoplastic fluids,” J. Non-Newton. Fluid Mech., 163, No. 1–3, 1–8 (2009).

    Article  Google Scholar 

  210. C. Métivier, C. Nouar, and J.-P. Brancher, “Linear stability involving the Bingham model when the yield stress approaches zero,” Phys. Fluids, 17, No. 10, 104106/1–104106/7 (2005).

  211. S. V. Milyutin, “On the calculation of flows of Bingham fluids,” In: Finite-Difference Methods for Boundary-Value Problems and Applications [in Russian], Proceedings of VII All-Russian Seminar, Izd. Kazan. Gos. Univ., Kazan (2007), pp. 200–205.

  212. S. V. Milyutin, “Practical optimization of the three-parametric iteration method for the calculation of flows of Bingham fluids,” Vychisl. Met. Prilozh., 9, 38–43 (2008).

    Google Scholar 

  213. S. V. Milyutin, “On an algorithm of the calculation of flows of a generalized Newtonian fluid,” Vestn. MGU, Ser. 1. Mat. Mekh., 5, 63–65 (2009).

    MathSciNet  Google Scholar 

  214. N. V. Mikhailov and P. A. Rebinder, “On structural-mechanical properties of disperse and high molecular systems,” Kolloid. Zh., 17, No. 2, 107–119 (1955).

    Google Scholar 

  215. E. Mitsoulis, “Fountain flow of pseudoplastic and viscoplastic fluids,” J. Non-Newton. Fluid Mech., 165, No. 1–2, 45–55 (2010).

    Article  Google Scholar 

  216. E. Mitsoulis and Th. Zisis, “Flow of Bingham plastics in a lid-driven cavity,” J. Non-Newton. Fluid Mech., 101, No. 3, 173–180 (2001).

    Article  MATH  Google Scholar 

  217. A.Molinari and R. J. Clifton, “Analytical characterization of shear localization in thermoviscoplastic materials,” Trans. ASME. J. Appl. Mech., 54, No. 4, 806–812 (1987).

    Article  MATH  Google Scholar 

  218. A. A. Movchan, “On the direct Lyapunov method in problems of stability of elastic systems,” Zh. Prikl. Mat. Mekh., 23, No. 3, 483–493 (1959).

    MathSciNet  Google Scholar 

  219. A. A. Movchan, “Stability of processes by two metrics,” Zh. Prikl. Mat. Mekh., 24, No. 6, 988–1001 (1960).

    Google Scholar 

  220. A. A. Movchan, “On the stability of deformation processes of continuous media,” Arch. Mech. Stosow, 15, 659–682 (1963).

    MATH  Google Scholar 

  221. P. P. Mosolov and V. P. Myasnikov, Variational Methods in the Theory of Flows of Rigid-Viscous-Plastic Media [in Russian], MGU, Moscow (1971).

    Google Scholar 

  222. M. A. Moyers-Gonzalez and I. A. Frigaard, “Numerical solution of duct flows of multiple viscoplastic fluids,” J. Non-Newton. Fluid Mech., 122, No. 1–3, 227–241 (2004).

    Article  MATH  Google Scholar 

  223. E. A. Muravleva, “Finite-difference schemes for the calculation of flows of viscous-plastic media in channels,” Mat. Model., 12, 64–76 (2008).

    Google Scholar 

  224. E. A. Muravleva, “The problem on the termination of flow of a viscous-plastic medium in a channel,” Vestn. MGU, Ser. 1. Mat. Mekh., 1, 68–71 (2009).

    MathSciNet  Google Scholar 

  225. E. A. Muravleva and L. V. Muravleva, “Nonstationary flows of viscous-plastic media in channels,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 164–188 (2009).

  226. L. V. Muravleva and E. A. Muravleva, “Uzawa method on semi-staggered grids for unsteady Bingham media flows, Russ. J. Numer. Anal. Math. Model., 24, No. 6, 543–563 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  227. E. A. Muravleva and M. A. Olshanskii, “Two finite-difference schemes for calculation of Bingham fluid flows in a cavity,” Russ. J. Numer. Anal. Math. Model., 23, No. 6, 615–634 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  228. V. P. Myasnikov, “Flows of viscous-plastic media under a complex shear,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 76–87 (1961).

    Google Scholar 

  229. M. Nakamura and T. Sawada, “Theoretical study on turbulence transition of Bingham plastic fluid in a pipe,” Trans. Jpn. Soc. Mech. Eng., B51, No. 465, 1642–1647 (1985).

    Google Scholar 

  230. M. Nakamura and T. Sawada, “A k − ε model for the turbulent analysis of Bingham plastic fluid,” Trans. Jpn. Soc. Mech. Eng., B52, No. 479, 2544–2551 (1986).

    Google Scholar 

  231. G. A. Nesenenko, Mathematical Modeling of Nonlinear Singularly Perturbed Nonstationary Processes of Heat and Mass Transition, Doctoral thesis, Moscow (2003).

    Google Scholar 

  232. D. W. Nicholson, “Adiabatic temperature rise in a viscoplastic rod under impact,” Mech. Res. Commun., 11, No. 5, 317–327 (1984).

    Article  MATH  Google Scholar 

  233. R. I. Nigmatulin, I. Sh. Akhatov, N. K. Vakhitova, and R. T. Lahey, “On the forced oscillations of a small gas bubble in a spherical liquid-filled flask,” J. Fluid Mech., 414, 47–73 (2000).

    Article  MATH  Google Scholar 

  234. L. V. Nikitin and D. B. Tokbergenov, “Interaction of a viscous-plastic, dynamically deformable thread with a matrix,” Izv. Akad. Nauk KazSSR, Ser. Fiz. Mat., No. 3, 58–61 (1974).

    Google Scholar 

  235. B. R. Nuriev, “Transverse impact of the cone against a viscous-plastic thread with large speed,” Izv. Akad. Nauk AzSSR, Ser. Fiz.-Khim. Mat., 7, No. 3, 58–63 (1986).

  236. C. Nouar, N. Kabouya, J. Dusek, and M. Mamou, “Modal and non-modal linear stability of the plane Bingham–Poiseuille flow,” J. Fluid Mech., 577, 211–239 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  237. P. M. Ogibalov and A. H. Mirzadjanzade, Nonstationary Motions of Viscous-Plastic Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  238. N. A. Okulov and N. N. Okulova, “Tests of version methods,” Uch. Zap. RGSU, 7, 236–241 (2009).

    Google Scholar 

  239. N. N. Okulova, “On a method for solution of the problem on the diffusion of a vortex layer in a viscous-plastic half-plane,” Vestn. MGU, Ser. 1. Mat. Mekh., 4 (2004).

  240. N. N. Okulova, “Numerical-analytical simulation of the problem on the distribution of stresses in a viscous-plastic band,” Vestn. Samar. Univ. Estestv.-Nauch. Ser., 6, 78–84 (2007).

    Google Scholar 

  241. M. A. Olshanskii, “Analysis of semi-staggered finite-difference method with application to Bingham flows,” Comput. Methods Appl. Mech. Engrg., 198, 975–985 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  242. F. K. Oppong and J. R. de Bruyn, “Diffusion of microscopic tracer particles in a yield-stress fluid,” J. Non-Newton. Fluid Mech., 142, No. 1–3, 104–111 (2007).

    Article  MATH  Google Scholar 

  243. J. F. Osterle, A. Charnes, and E. Saibel, “The rheodynamic squeeze film,” Lubricat. Eng., 12, No. 1, 33–36 (1956).

    Google Scholar 

  244. Ya. G. Panovko, Mechanics of Deformable Rigid Bodies. Modern Conceptions, Errors, and Paradoxes [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  245. T. C. Papanastasiou, “Flows of materials with yield,” J. Rheol., 31, No. 3, 385–404 (1987).

    Article  MATH  Google Scholar 

  246. P. R. Paslay and A. Slibar, “Laminar flow of drilling mud due to axial pressure gradient and external torque,” J. Petrol. Technol., 9, No. 11, 310–317 (1957).

    Google Scholar 

  247. P. R. Paslay and A. Slibar, “Criterion for flow of a Bingham plastic between two cylinders loaded by torque and pressure gradient,” J. Appl. Mech., 25, No. 2, 284–285 (1958).

    Google Scholar 

  248. K. B. Pavlov, A. S. Romanov, and S. L. Simhovich, “Hydrodynamical unstability of Poiseuille flows of a non-Newtonian viscous-plastic fluid,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 6, 152–154 (1974).

    Google Scholar 

  249. K. B. Pavlov, A. S. Romanov, and S. L. Simhovich, “Hydrodynamical stability of Hartman flows of a non-Newtonian viscous-plastic fluid,” Magn. Gidrodinam., 4, 43–46 (1974).

    Google Scholar 

  250. K. B. Pavlov, A. S. Romanov, and S. L. Simhovich, “Stability of Poiseuille flows of a viscousplastic fluid with respect to perturbations of finite amplitude,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 5, 166–169 (1975).

    Google Scholar 

  251. J. Peixinho, C. Nouar, C. Desaubry, and B. Thèron, “Laminar transitional and turbulent flow of yield stress fluid in a pipe,” J. Non-Newton. Fluid Mech., 128, No. 2–3, 172–184 (2005).

    Article  Google Scholar 

  252. P. Perzyna, Fundamental Problems in Viscoplasticity, Academic Press, New York (1966).

    Google Scholar 

  253. A. G. Petrov, “On the optimization of control processes for viscous-plastic flows in thin layers with varying forms of boundaries,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 127–132 (1997).

  254. A. G. Petrov, “The planar problem on displacement of a viscous-plastic medium by two parallel plates under the action of constant force,” Zh. Prikl. Mat. Mekh., 62, No. 4, 608–617 (1998).

    Google Scholar 

  255. A. G. Petrov, “Exact solutions of the boundary-value problem on nonstationary flows of a viscous-plastic medium between two plates,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 2, 3–13 (1999).

    Google Scholar 

  256. A. G. Petrov, “Flows of viscous and viscous-plastic media between two parallel plates,” Zh. Prikl. Mat. Mekh., 64, No. 1, 127–136 (2000).

    MATH  Google Scholar 

  257. A. G. Petrov, “Method of Poincar´e mappings in hydrodynamical systems. Dynamical chaos in the liquid layer between eccentrically rotating cylinders,” Zh. Prikl. Mekh. Tekh. Fiz., 44, No. 1, 3–21 (2003).

    MATH  Google Scholar 

  258. A. G. Petrov, “On mixing of a viscous fluid in the layer between eccentrically rotating cylinders,” Zh. Prikl. Mat. Mekh., 72, No. 5, 741–758 (2008).

    MATH  Google Scholar 

  259. A. G. Petrov, Analytical Hydrodynamics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  260. A. G. Petrov and L. V. Cherepanov, “Exact solutions of the problem on nonstationary flows of a viscous-plastic medium in a circular pipe,” Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, No. 2, 13–24 (2003).

    MathSciNet  Google Scholar 

  261. M. Piau and J. M. Piau, “Plane Couette flow of viscoplastic materials along a slippery vibrating wall,” J. Non-Newton. Fluid Mech., 125, No. 1, 71–85 (2005).

    Article  MATH  Google Scholar 

  262. A. Pinarbasi and A. Liakopoulos, “Stability of two-layer Poiseuille flow of Carreau-Yasuda and Bingham-like fluids,” J. Non-Newton. Fluid Mech., 57, No. 2–3, 227–241 (1995).

    Article  Google Scholar 

  263. B. E. Pobedrya, “On quasilinear tensor operators,” Vestn. MGU, Ser. 1. Mat. Mekh., 5, 97–100 (1971).

    Google Scholar 

  264. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. MGU, Moscow (1984).

    Google Scholar 

  265. B. E. Pobedrya, Lectures on Tensor Analysis [in Russian], Izd. MGU, Moscow (1986).

    Google Scholar 

  266. H. Poritsky, “The collapse or growth of a spherical bubble in a viscous fluid,” In: Proc. 1st U.S. Nat. Congr. Appl. Mech., 1951, Ann Arbor, Mich. (1951), pp. 812–821.

  267. G. P. Prikazchikov, “On the stability of flows of a viscous-plastic medium between planes with a gap,” Vestn. MGU, Ser. 1. Mat. Mekh., 3, 51–55 (1964).

    Google Scholar 

  268. T. M. Rasulov, “Solution of the mixed problem for the linearized equations of motion for a viscous-plastic medium motion,” Differ. Uravn., 27, No. 9, 1610–1617 (1991).

    MathSciNet  MATH  Google Scholar 

  269. N. Roquet, R. Michel, and P. Saramito, “Estimations d’erreur pour un fluide viscoplastique par èléments finis Pk et maillages adaptés,” C. R. Acad. Sci. Paris. Sér. I. Math., 331, No. 7, 563–568 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  270. N. Roquet and P. Saramito, “An adaptive finite element method for viscoplastic fluid flows in pipes,” Comput. Methods Appl. Mech. Eng., 190, No. 41, 5391–5412 (2001).

    Article  MATH  Google Scholar 

  271. N. Roquet and P. Saramito, “An adaptive finite element method for Bingham fluid flows around a cylinder,” Comput. Methods Appl. Mech. Eng., 192, No. 31–32, 3317–3341 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  272. N. Roussel, C. Lanos, and Z. Toutou, “Identification of Bingham fluid flow parameters using a simple squeeze test,” J. Non-Newton. Fluid Mech., 135, No. 1, 1–7 (2006).

    Article  MATH  Google Scholar 

  273. L. I. Rubinshtein, Stefan Problem [in Russian], Zvaigzne, Riga (1967).

    Google Scholar 

  274. A. Ya. Sagomonyan, “Motion of landslips arising at slopes of heights under the action of rain,” Vestn. MGU, Ser. 1. Mat. Mekh., 4, 30–36 (1999).

    Google Scholar 

  275. A. Ya. Sagomonyan, “Rain erosion of soils at slopes of heights,” Vestn. MGU, Ser. 1. Mat. Mekh., 4, 28–34 (2000).

    Google Scholar 

  276. R. Salvi, “On the existence of two phase problem for Bingham fluids,” Nonlinear Anal., 47, No. 6, 4205–4216 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  277. H. Schmitt, “Numerical simulation of Bingham fluid flow using prox-regularization,” J. Optim. Theory Appl., 106, No. 3, 603–626 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  278. G. A. Seregin, “Continuity for the strain velocity tensor in two-dimensional variational problems from the theory of the Bingham fluid,” Ital. J. Pure Appl. Math., 2, 141–150 (1997).

    MathSciNet  MATH  Google Scholar 

  279. V. V. Shelukhin, “Bingham viscoplastic as a limit of non-Newtonian fluid,” J. Math. Fluid Mech., 4, No. 2, 109–127 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  280. J. D. Sherwood and D. Durban, “Squeeze flow of a power-law viscoplastic solid,” J. Non-Newton. Fluid Mech., 62, No. 1, 35–54 (1996).

    Article  Google Scholar 

  281. S. V. Serikov, “On the stability of flows of a planar plastic ring with free boundaries,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 94–101 (1975).

    Google Scholar 

  282. G. S. Shapiro and V. A. Shachnev, “On the dynamical behavior of a viscous-plastic body possessing irreversible viscosity,” In: Waves in Inelastic Media [in Russian], Izd. Akad. Nauk MSSR, Kishinev (1970), pp. 215–220.

    Google Scholar 

  283. V. V. Shelukhin, “A model of Binhgam fluids in variables stress–velocity,” Dokl. Ross. Akad. Nauk, 377, No. 4, 455–458 (2001).

    MathSciNet  Google Scholar 

  284. A. M. Slobodkin, “On the stability of equilibria of conservative systems with infinite number of degrees of freedom,” Zh. Prikl. Mat. Mekh., 26, No. 2, 356–358 (1962).

    Google Scholar 

  285. A. M. Slobodkin, “On features of the concept of the equilibrium stability in the Lyapunov sense for systems with infinite number of degrees of freedom,” Izv. Akad. Nauk SSSR. Mekh., 26, No. 5, 38–46 (1965).

    Google Scholar 

  286. A. M. Slobodkin, “On justification of the energy criterion of equilibrium stability,” In: Elasticity and Nonelasticity [in Russian], MGU, Moscow (1971).

    Google Scholar 

  287. B. Storakers, “Plastic and visco-plastic instability of a thin tube under internal pressure, torsion and axial tension,” Int. J. Mech. Sci., 10, No. 6, 519–529 (1968).

    Article  Google Scholar 

  288. M. B. Sugak, “Motion of a viscous-plastic mass between two coaxial cones,” Inzh. Fiz. Zh., 11, No. 6, 802–808 (1966).

    Google Scholar 

  289. P. S. Symonds and T. C. T. Ting, “Longitudinal impact on viscoplastic rods: Approximate methods and comparisons,” Trans. ASME. Ser. E. J. Appl. Mech., 31, No. 4, 611–620 (1964).

    Article  MathSciNet  Google Scholar 

  290. D. A. Tarzia and C. V. Turner, “The asymptotic behavior for the two-phase Stefan problem with a convective boundary condition,” Commun. Appl. Anal., 7, No. 2–3, 313–334 (2003).

    MathSciNet  MATH  Google Scholar 

  291. V. P. Tikhonov, S. A. Gulyaev, and S. S. Semenyuta, “On the break of a layer of a viscous-plastic fluid between two surfaces,” Kolloid. Zh., 55, No. 4, 104–109 (1993).

    Google Scholar 

  292. T. C. T. Ting and P. S. Symonds, “Impact on rods of nonlinear viscoplastic material—numerical and approximate solutions,” Int. J. Solids Struct., 3, No. 4, 587–605 (1967).

    Article  Google Scholar 

  293. D. B. Tokbergenov, “Dynamical deformation of a viscous-plastic thread,” Izv. Akad. Nauk KazSSR. Ser. Fiz. Mat., No. 1, 72–76 (1973).

    Google Scholar 

  294. D. L. Tokpavi, P. Jay, A. Magnin, and L. Jossic, “Experimental study of the very slow flow of a yield stress fluid around a circular cylinder,” J. Non-Newton. Fluid Mech., 164, No. 1–3, 35–44 (2009).

    Article  Google Scholar 

  295. G. Torres and C. Turner, “Method of straight lines for a Bingham problem in cylindrical pipe,” Appl. Numer. Math., 47, No. 3–4, 543–558 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  296. J. A. Tsamopoulos, M. E. Chen, and A. V. Borkar, “On the spin coating of viscoplastic fluids,” Rheol. Acta, 35, No. 4, 597–615 (1996).

    Article  Google Scholar 

  297. S. Tsangaris, C. Nikas, G. Tsangaris, and P. Neofytou, “Couette flow of a Bingham plastic in a channel with equally porous parallel walls,” J. Non-Newton. Fluid Mech., 144, No. 1, 42–48 (2007).

    Article  MATH  Google Scholar 

  298. P. Tugcu and K. W. Neale, “Analysis of neck propagation in polymeric fibres including the effects of viscoplasticity,” Trans. ASME. J. Eng. Mater. Technol., 110, No. 4, 395–400 (1988).

    Article  Google Scholar 

  299. N. V. Tyabin, “Flow of a viscous-plastic fluid disperse system in a diffuser and immersion of a wedge in a disperse system,” Dokl. Akad. Nauk SSSR, 84, No. 5, 943–946 (1952).

    Google Scholar 

  300. N. V. Tyabin, “Rheodynamical theory of viscous-plastic lubricants,” Tr. Kazan. Sel’khoz. Inst., 39, 132–150 (1958).

    Google Scholar 

  301. N. V. Tyabin andM. A. Pudovkin, “Flows of a viscous-plastic disperse system in a conic diffuser,” Dokl. Akad. Nauk SSSR, 92, No. 1, 53–56 (1953).

  302. I. G. Vardoulakis, “Stability and bifurcation in geomechanics,” In: Proc. 6th Intern. Conf. on Numerical Methods in Geomechanics. Innsbruck, 1988, 1, Baekema, Rotterdam; Brookfield (1988), pp. 155–168.

    Google Scholar 

  303. A. Vikhansky, “Lattice-Boltzmann method for yield-stress liquids,” J. Non-Newton. Fluid Mech., 155, No. 3, 95–100 (2008).

    Article  Google Scholar 

  304. G. Vinay, A. Wachs, and J.-F. Agassant, “Numerical simulation of non-isothermal viscoplastic waxy crude oil flows,” J. Non-Newton. Fluid Mech., 128, No. 2–3, 144–162 (2005).

    Article  MATH  Google Scholar 

  305. G. Vinay, A.Wachs, and J.-F. Agassant, “Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils,” J. Non-Newton. Fluid Mech., 136, No. 1, 93–105 (2006).

    Article  MATH  Google Scholar 

  306. G. V. Vinogradov and A. A. Mamakov, “Flow of greases under the action of complex shear,” Trans. ASME. Ser. F. J. Lubr. Technol., 90, No. 3, 604–607 (1968).

    Article  Google Scholar 

  307. G. V. Vinogradov, A. A. Mamakov, and V. P. Pavlov, “Flows of anomalous viscous systems under the action of two pure shears in mutually perpendicular directions,” Dokl. Akad. Nauk SSSR, 127, No. 2, 362–365 (1959).

    Google Scholar 

  308. V. I. Vishnyakov, K. B. Pavlov, and A. S. Romanov, “Peristaltic flows of a non-Newtonian viscous-plastic fluid in a gap channel,” Eng. Phys. J., 31, No. 3, 499–505 (1976).

    Google Scholar 

  309. D. Vola, L. Boscardin, and J. C. Latché, “Laminar unsteady flows of Bingham fluids: A numerical strategy and some benchmark results,” J. Comput. Phys., 187, No. 2, 441–456 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  310. M. P. Volarovich, “Investigation of rheological properties of disperse systems,” Colloid J., 16, No. 3, 227–240 (1954).

    Google Scholar 

  311. M. P. Volarovich and N. V. Lasovskaya, “Investigation of peat flows in conic nozzles,” Dokl. Akad. Nauk SSSR, 76, No. 2, 211–213 (1951).

    Google Scholar 

  312. A. Wachs, “Numerical simulation of steady Bingham flow through an eccentric annular crosssection by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods,” J. Non-Newton. Fluid Mech., 142, No. 2, 183–198 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  313. E. Walicki and A. Walicka, “An approximate analysis for conical flow of viscoplastic fluids,” Zecz. Nauk. Bud. WSI Zielonej Gorze, 106, 97–217 (1994).

    Google Scholar 

  314. L. L. Wang, “A criterion of thermo-viscoplastic instability for adiabatic shearing,” Proc. Intern. Symp. on Intense Dynam. Loading and Effects, Beijing, 1986, Oxford (1988), pp. 787–792.

  315. P. G.Wang and Z. D. Wang, “The analysis of stability of Bingham fluid flowing down an inclined plane,” Appl. Math. Mech., 16, No. 10, 1013–1018 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  316. R. A. Williams and L. E. Malvern, “Harmonic dispersion analysis of incremental waves in uniaxially prestressed plastic and viscoplastic bars, plates, and unbounded media,” Trans. ASME. Ser. E. J. Appl. Mech., 36, No. 1, 59–64 (1969).

    Article  MATH  Google Scholar 

  317. G. Wittum, V. Schulz, B. Maar, and D. Logashenko, “Numerical mrthods for parameter estimation in Bingham-fluids,” In: Mathematics — key technology for the future, Springer-Verlag, Berlin (2003), pp. 204–215.

    Chapter  Google Scholar 

  318. W. Wojewòdzki, “Buckling of short viscoplastic cylindrical shells subjected to radial impulse,” Int. J. Non-Linear Mech., 8, No. 4, 325–343 (1973).

    Article  MATH  Google Scholar 

  319. W.Wojewòdzki and P. Lewinski, “Viscoplastic axisymmetrical buckling of spherical shell impulse subjected to radial pressure,” Eng. Struct., 3, No. 3, 168–174 (1981).

    Article  Google Scholar 

  320. C. W. Wu and H. X. Sun, “A new hydrodynamic lubrication theory for bilinear rheological fluids,” J. Non-Newton. Fluid Mech., 56, No. 3, 253–256 (1995).

    Article  Google Scholar 

  321. V. O. Yablonskii, N. V. Tyabin, and V. M. Yashchuk, “Application of viscous-plastic lubricants in hydrostatic supports for improvement of their exploitation characteristics,” Vestn. Mashinostr., 3, 11–14 (1995).

    Google Scholar 

  322. E. I. Zababakhin, “Filling of bubbles in a viscous fluid,” Zh. Prikl. Mat. Mekh., 24, No. 6, 1129–1131 (1998).

    Google Scholar 

  323. V. S. Zarubin and M. M. Lukashin, “Solution of the Stefan problem by method of continuous counting,” In: Problems of Gas Dynamics and Heat Mass Exchanging in Energy Engines [in Russian], MEI, Moscow (2003), 2, pp. 372–375.

    Google Scholar 

  324. Yu. V. Zhernoviy and M. T. Saichuk, “On the application of the method of Green functions for the numerical simulation of multi-dimensional Stefan problems,” Inzh.-Fiz. Zh., 71, No. 5, 910–916 (1998).

    Google Scholar 

  325. H. Zhu, Y. D. Kim, and D. De Kee, “Non-Newtonian fluids with a yield stress,” J. Non-Newton. Fluid Mech., 129, No. 3, 177–181 (2005).

    Article  MATH  Google Scholar 

  326. K. J. Zwick, P. S. Ayyaswamy, and I. M. Cohen, “Variational analysis of the squeezing flow of a yield stress fluid,” J. Non-Newton. Fluid Mech., 63, No. 2–3, 179–199 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Georgievskii.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 78, Partial Differential Equations and Optimal Control, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgievskii, D.V. Hydrodynamical and computational aspects and stability problems for viscoplastic flows. J Math Sci 189, 223–256 (2013). https://doi.org/10.1007/s10958-013-1182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1182-3

Keywords

Navigation