Skip to main content
Log in

Computing the Hilbert transform using biorthogonal spline wavelets

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we summarize some facts on spline wavelets, analyze the Hilbert transform of these wavelets on the real line and on the unit circle, describe an algorithm for computing the Hilbert transform on uniform grids, and report on some test calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Börm and W. Hackbusch, “Hierarchical quadrature for singular integrals,” Computing, 74, No. 2, 75–100 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. 1. One-Dimensional Theory, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften. Mathematische Reihe, 40, Birkhäuser, Basel–Stuttgart(1971).

  3. C. K. Chui, An Introduction to Wavelets. Wavelet Analysis and Its Applications, Academic Press, Boston, MA (1992).

    Google Scholar 

  4. A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Commun. Pure Appl. Math., 45, No. 5, 485–560 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Dahmen and A. Kunoth, “Multilevel preconditioning,” Numer. Math., 63, No. 3, 315–344 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Dahmen, S. Prössdorf, and R. Schneider, “Wavelet approximation methods for pseudodifferential equations, II. Matrix compression and fast solution,” Adv. Comput. Math., 1, Nos. 3–4, 259–335 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Dahmen, S. Prössdorf, and R. Schneider, “Wavelet approximation methods for pseudodifferential equations, I. Stability and convergence”, Math. Z., 215, No. 4, 583–620 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput., 14, No. 6, 1368–1393 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data, II,” Appl. Comput. Harmon. Anal., 2, No. 1, 85–100 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Gaier, Konstruktive Methoden der konformen Abbildung. Springer-Verlag, Berlin–Göttingen–Heidelberg (1964).

    Book  MATH  Google Scholar 

  11. M. Golomb, “Approximation by periodic spline interpolants on uniform meshes,” J. Approx. Theory, 1, 26–65 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. H. Gutknecht, “Fast algorithms for the conjugate periodic function,” Computing, 22, 79–91 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. L. Hahn, Hilbert Transforms in Signal Processing, The Artech House Signal Processing Library, Artech House, Boston, MA (1996).

    MATH  Google Scholar 

  14. P. Henrici, Applied and computational complex analysis, III. Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions, Reprint, Wiley Classics Library, Wiley, New York (1993).

    Google Scholar 

  15. F. W. King, Hilbert Transforms, Vol. 1, Encycl. Math. Appl. 124, Cambridge Univ. Press, Cambridge (2009).

    Book  Google Scholar 

  16. S. Kunis and D. Potts, “Time and memory requirements of the nonequispaced FFT,” Sampl. Theory Signal Image Process., 7, No. 1, 77–100 (2008).

    MathSciNet  MATH  Google Scholar 

  17. F. Martin, Analytische und numerische Verfahren zur Berechnung der Hilbert Transformation und zur Lösung funktionentheoretischer Randwertaufgaben, Ph.D. thesis, TU Bergakademie Freiberg (2010).

  18. J. Prestin, “Trigonometric wavelets,” in: Wavelets and Apllied Topics, Narosa Publishing, New Delhi (2001), pp. 191–223.

    Google Scholar 

  19. J. Prestin and E. Quak, “Trigonometric interpolation and wavelet decompositions,” Numer. Algorithms, 9, Nos. 3–4, 293–317 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Prössdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations, Mathematische Lehrbücher und Monographien II. Abteilung: Mathematische Monographien. 84. Akademie-Verlag, Berlin (1991).

    Google Scholar 

  21. E. Wegert, “An iterative method for solving nonlinear Riemann–Hilbert problems,” J. Comput. Appl. Math., 29, No. 3, 311–327 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Wegert, “Nonlinear boundary-value problems for holomorphic functions and singular integral equations,” Math. Res., 65, Akademie Verlag, Berlin (1992).

  23. R. Wegmann, “Ein Iterationsverfahren zur konformen Abbildung,” Numer. Math., 30, 453–466 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Wegmann, “Discretized versions of Newton type iterative methods for conformal mapping,” J. Comput. Appl. Math., 29, No. 2, 207–224 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Wegmann, “Methods for numerical conformal mapping,” in: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2 (R.Kühnau, ed.), Elsevier/North Holland, Amsterdam (2005), pp. 351–477.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Martin or E. Wegert.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 77, Complex Analysis and Topology, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, F., Wegert, E. Computing the Hilbert transform using biorthogonal spline wavelets. J Math Sci 189, 150–163 (2013). https://doi.org/10.1007/s10958-013-1177-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1177-0

Keywords

Navigation