Abstract
In this paper, we summarize some facts on spline wavelets, analyze the Hilbert transform of these wavelets on the real line and on the unit circle, describe an algorithm for computing the Hilbert transform on uniform grids, and report on some test calculations.
Similar content being viewed by others
References
S. Börm and W. Hackbusch, “Hierarchical quadrature for singular integrals,” Computing, 74, No. 2, 75–100 (2005).
P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. 1. One-Dimensional Theory, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften. Mathematische Reihe, 40, Birkhäuser, Basel–Stuttgart(1971).
C. K. Chui, An Introduction to Wavelets. Wavelet Analysis and Its Applications, Academic Press, Boston, MA (1992).
A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Commun. Pure Appl. Math., 45, No. 5, 485–560 (1992).
W. Dahmen and A. Kunoth, “Multilevel preconditioning,” Numer. Math., 63, No. 3, 315–344 (1992).
W. Dahmen, S. Prössdorf, and R. Schneider, “Wavelet approximation methods for pseudodifferential equations, II. Matrix compression and fast solution,” Adv. Comput. Math., 1, Nos. 3–4, 259–335 (1993).
W. Dahmen, S. Prössdorf, and R. Schneider, “Wavelet approximation methods for pseudodifferential equations, I. Stability and convergence”, Math. Z., 215, No. 4, 583–620 (1994).
A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput., 14, No. 6, 1368–1393 (1993).
A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data, II,” Appl. Comput. Harmon. Anal., 2, No. 1, 85–100 (1995).
D. Gaier, Konstruktive Methoden der konformen Abbildung. Springer-Verlag, Berlin–Göttingen–Heidelberg (1964).
M. Golomb, “Approximation by periodic spline interpolants on uniform meshes,” J. Approx. Theory, 1, 26–65 (1968).
M. H. Gutknecht, “Fast algorithms for the conjugate periodic function,” Computing, 22, 79–91 (1979).
S. L. Hahn, Hilbert Transforms in Signal Processing, The Artech House Signal Processing Library, Artech House, Boston, MA (1996).
P. Henrici, Applied and computational complex analysis, III. Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions, Reprint, Wiley Classics Library, Wiley, New York (1993).
F. W. King, Hilbert Transforms, Vol. 1, Encycl. Math. Appl. 124, Cambridge Univ. Press, Cambridge (2009).
S. Kunis and D. Potts, “Time and memory requirements of the nonequispaced FFT,” Sampl. Theory Signal Image Process., 7, No. 1, 77–100 (2008).
F. Martin, Analytische und numerische Verfahren zur Berechnung der Hilbert Transformation und zur Lösung funktionentheoretischer Randwertaufgaben, Ph.D. thesis, TU Bergakademie Freiberg (2010).
J. Prestin, “Trigonometric wavelets,” in: Wavelets and Apllied Topics, Narosa Publishing, New Delhi (2001), pp. 191–223.
J. Prestin and E. Quak, “Trigonometric interpolation and wavelet decompositions,” Numer. Algorithms, 9, Nos. 3–4, 293–317 (1995).
S. Prössdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations, Mathematische Lehrbücher und Monographien II. Abteilung: Mathematische Monographien. 84. Akademie-Verlag, Berlin (1991).
E. Wegert, “An iterative method for solving nonlinear Riemann–Hilbert problems,” J. Comput. Appl. Math., 29, No. 3, 311–327 (1990).
E. Wegert, “Nonlinear boundary-value problems for holomorphic functions and singular integral equations,” Math. Res., 65, Akademie Verlag, Berlin (1992).
R. Wegmann, “Ein Iterationsverfahren zur konformen Abbildung,” Numer. Math., 30, 453–466 (1978).
R. Wegmann, “Discretized versions of Newton type iterative methods for conformal mapping,” J. Comput. Appl. Math., 29, No. 2, 207–224 (1990).
R. Wegmann, “Methods for numerical conformal mapping,” in: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2 (R.Kühnau, ed.), Elsevier/North Holland, Amsterdam (2005), pp. 351–477.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 77, Complex Analysis and Topology, 2012.
Rights and permissions
About this article
Cite this article
Martin, F., Wegert, E. Computing the Hilbert transform using biorthogonal spline wavelets. J Math Sci 189, 150–163 (2013). https://doi.org/10.1007/s10958-013-1177-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-013-1177-0