Some aspects of the theory of integro-differential Barbashin equations in function spaces

We study the solvability conditions for the Cauchy problem for the Barbashin integro-differential equation in the space of bounded continuous functions and in the space of continuous vector-valued functions with the values in an ideal Banach space. We also consider conditions guaranteeing the existence of classical and generalized solutions to the Cauchy problem for systems of linear Barbashin integro-differential equations. Bibliography: 5 titles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. M. Appell, A. S. Kalitvin, and P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York (2000).

    Google Scholar 

  2. 2.

    G. Brack, “Systems with substantially distributed parameters,” Math. Res. 27, 421-424 (1985).

    MathSciNet  Google Scholar 

  3. 3.

    A. N. Kolmogorov, Probability Theory and Mathematical Statistics [in Russian], Nauka, Moscow (1986); English transl.: Kluwer Acad. Publ., Dordrecht (1992).

    Google Scholar 

  4. 4.

    A. S. Kalitvin, Linear Operators with Partial Integrals [in Russian], Voronezh Univ. Press, Voronezh (2000).

    Google Scholar 

  5. 5.

    E. Hille and R. S. Phillips, Functional Analysis and Semigroups Am. Math. Soc., Providence, RI (1957).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Kalitvin.

Additional information

Translated from Problemy Matematicheskogo Analiza 67, November 2012, pp. 61–68.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalitvin, A.S. Some aspects of the theory of integro-differential Barbashin equations in function spaces. J Math Sci 188, 241–249 (2013). https://doi.org/10.1007/s10958-012-1122-7

Download citation

Keywords

  • Banach Space
  • Generalize Solution
  • Cauchy Problem
  • Measurable Function
  • Integral Operator