Journal of Mathematical Sciences

, Volume 187, Issue 4, pp 511–523 | Cite as

Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions

Article

We consider the problem of global robust exponential stability for Hopfield neural networks with norm-bounded parameter uncertainties and inverse Hölder neuron activation functions. By using the Brouwer degree properties and some analysis techniques, we investigate the existence and uniqueness of an equilibrium point. Based on the Lyapunov stability theory, we derive a global robust exponential-stability criterion in terms of a linear matrix inequality (LMI). Two numerical examples are provided to demonstrate the efficiency and validity of the proposed robust stability results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Singh, “A new criterion for global robust stability of interval delayed neural networks,” J. Comput. Appl. Math., 221, 219–225 (2008).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    V. Singh, “Improved global robust stability for interval-delayed Hopfield neural networks,” Neural. Process Lett., 27, 257–265 (2008).CrossRefGoogle Scholar
  3. 3.
    B. Zhang, S. Xu, and Y. Li, “Delay-dependent robust exponential stability for uncertain recurrent neural networks with time-varying delays,” Int. J. Neural. Syst., 17, 207–218 (2007).MATHCrossRefGoogle Scholar
  4. 4.
    H. Zhang, Z.Wang, and D. Liu, “Robust stability analysis for interval Cohen–Grossberg neural networks with unknown time-varying delays,” IEEE Trans Neural Network, 19, 1942–1955 (2008).CrossRefGoogle Scholar
  5. 5.
    W. Zhao and Q. Zhu, “New results of global robust exponential stability of neural networks with delays,” Nonlin. Anal., Real World Appl., 11, 1190–1197 (2010).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    O. Kwon, J. Park, and S. Lee, “On robust stability for uncertain neural networks with interval time-varying delays,” IET Control Theory Appl., 2, 625–634 (2008).MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Gau, C. Lien, and J. Hsieh, “Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach,” Chaos, Solitons Fract., 32, 1258–1267 (2007).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J. Shao, T. Huang, and S. Zhou, “An analysis on global robust exponential stability of neural networks with time-varying delays,” Neurocomputing, 72, 1993–1998 (2009).CrossRefGoogle Scholar
  9. 9.
    C. Zheng, H. Zhang, and Z. Wang, “Novel delay-dependent criteria for global robust exponential stability of delayed cellular neural networks with norm-bounded uncertainties,” Neurocomputing, 721, 744–1754 (2009).Google Scholar
  10. 10.
    J. Qiu, J. Zhang, J.Wang, Y. Xia, and P. Shi, “A new global robust stability criteria for uncertain neural networks with fast time-varying delays,” Chaos, Solitons Fract., 37, 360–368 (2008).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Z. Wang, H. Zhang, and W. Yu, “Robust exponential stability analysis of neural networks with multiple time delays,” Neurocomputing, 70, 2534–2543 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Senan and S. Arik, “New results for global robust stability of bidirectional associative memory neural networks with multiple time delays,” Chaos, Solitons Fract., 41, 2106–2114 (2009).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    L. Sheng and H. Yang, “Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays,” Chaos, Solitons Fract., 42, 2120–2128 (2009).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Z. Wang, H. Zhang, and W. Yu, “Robust stability of Cohen–Grossberg neural networks via state transmission matrix,” IEEE Trans Neural Network, 20, 169–174 (2009).CrossRefGoogle Scholar
  15. 15.
    W. Su and Y. Chen, “Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays,” Commun. Nonlin. Sci. Numer. Simulat., 14, 2293–2300 (2009).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    L. Wang, Y. Zhang, Z. Zhang, and Y. Wang, “LMI-based approach for global exponential robust stability for reaction–diffusion uncertain neural networks with time-varying delay,” Chaos, Solitons Fract., 41, 900–905 (2009).MATHCrossRefGoogle Scholar
  17. 17.
    R. Zhang and L. Wang, “Global exponential robust stability of interval cellular neural networks with S-type distributed delays,” Math. Comput. Model., 50, 380–385 (2009).MATHCrossRefGoogle Scholar
  18. 18.
    J. Zhang, S. Peng, and J. Qiu, “Robust stability criteria for uncertain neutral system with time delay and nonlinear uncertainties,” Chaos, Solitons Fract., 38, No. 1, 160–167 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Chen, A. Xue, R. Lu, and S. Zhou, “On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations,” Nonlin. Anal., 68, 2464–2470 (2008).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    C. Zheng, X. Jing, Z. Wang, and J. Feng, “Further results for robust stability of cellular neural networks with linear fractional uncertainty,” Commun Nonlin. Sci. Numer. Simulat. (2009); doi:10.1016/j.cnsns.2009.11.007.
  21. 21.
    H. Wu, F. Tao, L. Qin, R. Shi, and L. He, “Robust exponential stability for interval neural networks with delays and non-Lipschitz activation functions,” Nonlin. Dynam. (2010); doi:10.1007/s11071-010-9926-9.
  22. 22.
    H. Wu and X. Xue, “Stability analysis for neural networks with inverse Lipschitzian neuron activations and impulses,” Appl. Math. Model., 32, 2347–2359 (2008).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    H. Wu, “Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz neuron activations,” Nonlin. Anal., Real World Appl., 10, 2297–2306 (2009).MATHCrossRefGoogle Scholar
  24. 24.
    K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985).MATHCrossRefGoogle Scholar
  25. 25.
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia (1994).MATHCrossRefGoogle Scholar
  26. 26.
    P. Miller and A. Michel, Differential Equations, Academic Press, New York (1982).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.College of Information Science and EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.College of ScienceYanshan UniversityQinhuangdaoChina

Personalised recommendations