Journal of Mathematical Sciences

, Volume 187, Issue 4, pp 494–510 | Cite as

Method of locally linear approximation of nonlinear difference operators by weakly regular operators

Article

We establish conditions for the existence of bounded solutions of nonlinear difference equations by using a local linear approximation of these equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Halanay and D. Wexler, Teoria Calitativă a Sistemelor cu Impulsuri, Editura Academiei Republicii Socialiste România, Bucharest (1968).MATHGoogle Scholar
  2. 2.
    D. I. Martynyuk, Lectures on the Qualitative Theory of Difference Equations [in Russian], Naukova Dumka, Kiev (1972).Google Scholar
  3. 3.
    A. N. Sharkovskii, Yu. L. Maistrenko, and E. Yu. Romanenko, Difference Equations and Their Applications [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  4. 4.
    A. Ya. Dorogovtsev, Periodic and Stationary Modes of Infinite-Dimensional Deterministic and Stochastic Dynamical Systems [in Russian], Vyshcha Shkola, Kiev (1992).Google Scholar
  5. 5.
    A. M. Samoilenko and Yu. V. Teplins’kyi, Elements of the Mathematical Theory of Evolution Equations in Banach Spaces [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2008).Google Scholar
  6. 6.
    V. Yu. Slyusarchuk, Invertibility of Nonlinear Difference Operators [in Ukrainian], National University of Water Industry and Nature Resources Use, Rivne (2006).Google Scholar
  7. 7.
    V. E. Slyusarchuk, “Weakly nonlinear perturbations of normally solvable functional-differential and discrete equations,” Ukr. Mat. Zh., 39, No. 5, 660–662 (1987); English translation: Ukr. Math. J., 39, No. 5, 540–542 (1987).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. Yu. Slyusarchuk, “Fixed-point theorem for c-completely continuous operators in spaces of functions bounded on a countable group of functions,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 421, 105–108 (2008).Google Scholar
  9. 9.
    V. Yu. Slyusarchuk, “Conditions for the existence of bounded solutions of nonlinear difference equations,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 454, 88–94 (2009).Google Scholar
  10. 10.
    V. Yu. Slyusarchuk, “Method of local linear approximation in the theory of bounded solutions of nonlinear difference equations,” Nelin. Kolyvannya, 12, No. 3, 109–115 (2009); English translation: Nonlin. Oscillations, 12, No. 3, 380–391 (2009).MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. Yu. Slyusarchuk, “Method of local linear approximation in the theory of bounded solutions of nonlinear differential equations,” Ukr. Mat. Zh., 61, No. 11, 1541–1556 (2009); English translation: Ukr. Math. J., 61, No. 11, 1809–1829 (2009).MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. Yu. Slyusarchuk, “Method of local linear approximation in the theory of nonlinear functional differential equations,” Mat. Sb., 201, No. 8, 103–126 (2010).MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. Yu. Slyusarchuk, Method of Local Linear Approximation in the Theory of Nonlinear Equations [in Ukrainian], National University of Water Management and Nature Resources Use, Rivne (2011).Google Scholar
  14. 14.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1968).Google Scholar
  15. 15.
    S. G. Krein, Linear Equations in a Banach Space [in Russian], Nauka, Moscow (1971).Google Scholar
  16. 16.
    V. E. Slyusarchuk, “Exponential dichotomy for solutions of discrete systems,” Ukr. Mat. Zh., 35, No. 1, 109–115 (1983); English translation: Ukr. Math. J., 35, No. 1, 98–103 (1983).MATHCrossRefGoogle Scholar
  17. 17.
    V. E. Slyusarchuk, “Representation of the bounded solutions of discrete linear system,” Ukr. Mat. Zh., 39, No. 2, 210–215 (1987); English translation: Ukr. Math. J., 39, No. 2, 176–180 (1987).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    É. Mukhamadiev, “On the invertibility of functional operators in the space of functions bounded on the axis,” Mat. Zametki, 11, No. 3, 269–274 (1972).MathSciNetGoogle Scholar
  19. 19.
    É. Mukhamadiev, “Investigation in the theory of periodic and bounded solutions of differential equations,” Mat. Zametki, 30, No. 3, 443–460 (1981).MathSciNetMATHGoogle Scholar
  20. 20.
    V. E. Slyusarchuk, “Invertibility of almost periodic c-continuous functional operators,” Mat. Sb., 116 (158), No. 4(12), 483–501 (1981).MathSciNetGoogle Scholar
  21. 21.
    V. E. Slyusarchuk, “Integral representation of c-continuous linear operators,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 8, 34–37 (1981).Google Scholar
  22. 22.
    V. Yu. Slyusarchuk, “Invertibility of nonautonomous functional differential operators,” Mat. Sb., 130 (172), No. 1 (5), 86–104 (1986).MathSciNetGoogle Scholar
  23. 23.
    V. E. Slyusarchuk, “Necessary and sufficient conditions for the invertibility of nonautonomous functional differential operators,” Mat. Zametki, 42, No. 2, 262–267 (1987).MathSciNetMATHGoogle Scholar
  24. 24.
    V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of uniformly c-continuous functional-differential operators,” Ukr. Mat. Zh., 41, No. 2, 201–205 (1989); English translation: Ukr. Math. J., 41, No. 2, 180–183 (1989).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York University, New York (1974).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.National University of Water Management and Nature Resources UseRivneUkraine

Personalised recommendations