Journal of Mathematical Sciences

, Volume 187, Issue 4, pp 471–493 | Cite as

Approximation-iterative method for weakly nonlinear integral equations with restrictions

  • A. Yu. Luchka
  • V. F. Mel’nychuk
Article

We substantiate the applicability of the approximation-iterative method to weakly nonlinear integral equations with restrictions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Luchka and V. F. Mel’nychuk, “Iterative method for quasilinear integral equations with constraints,” Nelin. Kolyvannya, 14, No. 4, 496–506 (2011); English translation: Nonlin. Oscillations, 14, No. 4, 526–536 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Yu. Luchka, “General approach to the construction of methods of approximation-iterative type,” Visn. Derzh. Univ. “L’vivs’ka Politekhnika,” No. 3, 212–216 (2000).Google Scholar
  3. 3.
    A. Yu. Luchka, “Integral equations with restrictions and methods for their solution,” Kibern. Sist. Analiz, No. 3, 82–96 (19960.Google Scholar
  4. 4.
    A. Yu. Luchka, “Methods for the solution of equations with restrictions and the Sokolov projection-iterative method,” Ukr. Mat. Zh., 48, No. 11, 1501–1509 (1996); English translation: Ukr. Math. J., 48, No. 11, 1696–1707 (1996).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    A. Yu. Luchka, “Methods for the investigation of systems of differential equations with restrictions,” in: Proceedings of the Ukrainian Mathematical Congress “Differential Equations and Nonlinear Oscillations” (Kyiv, 2002) [in Ukrainian] (2002), pp. 43–59.Google Scholar
  6. 6.
    A. Yu. Luchka and O. B. Nesterenko, “Methods for the solution of boundary-value problems for weakly nonlinear integro-differential equations with parameters and restrictions,” Ukr. Mat. Zh., 61, No. 5, 672–679 (2009); English translation: Ukr. Math. J., 61, No. 5, 801–809 (2009).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Yu. Luchka and V. A. Feruk, “Construction of approximate solutions of systems of differential equations with parameters and restrictions,” Nelin. Kolyvannya, 13, No. 3, 361–378 (2010); English translation: Nonlin. Oscillations, 13, No. 3, 389–406 (2010).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A. Yu. Luchka
    • 1
  • V. F. Mel’nychuk
    • 1
  1. 1.KyivUkraine

Personalised recommendations