Skip to main content
Log in

Geometries on σ-Hermitian matrices

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Ring geometry and the geometry of matrices naturally meet at the ring R := K n×n of (n×n)-matrices with entries in a field K (not necessarily commutative). Our aim is to strengthen the interaction between these disciplines. Below we sketch some results from either side, even though not in their most general form, but in a way that is tailored to our needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bartolone, “Jordan homomorphisms, chain geometries, and the fundamental theorem,” Abh. Math. Sem. Univ. Hamburg, 59, 93–99 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Blunck, “Regular spreads and chain geometries,” Bull. Belg. Math. Soc. Simon Stevin, 6, 589–603 (1999).

    MathSciNet  MATH  Google Scholar 

  3. A. Blunck and H. Havlicek, “Projective representations. I. Projective lines over rings,” Abh. Math. Sem. Univ. Hamburg, 70, 287–299 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Blunck and H. Havlicek, “Jordan homomorphisms and harmonic mappings,” Monatsh. Math., 139, No. 2, 111–127 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Blunck and H. Havlicek, “On bijections that preserve complementarity of subspaces,” Discrete Math., 301, No. 1, 46–56 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Blunck and H. Havlicek, “Projective lines over Jordan systems and geometry of Hermitian matrices,” Linear Algebra Appl., 433, No. 3, 672–680 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Blunck and A. Herzer, Kettengeometrien. Eine Einfuhrung, Shaker Verlag, Aachen (2005).

    Google Scholar 

  8. P. J. Cameron, “Dual polar spaces,” Geom. Dedic., 12, No. 1, 75–85 (1982).

    Article  MATH  Google Scholar 

  9. J. A. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin–New York (1971).

    MATH  Google Scholar 

  10. A. Herzer, “Chain geometries,” in: Handbook of Incidence Geometry, North-Holland, Amsterdam (1995), pp. 781–842.

  11. M. Kwiatkowski and M. Pankov, “Opposite relation on dual polar spaces and half-spin Grassmann spaces,” Results Math., 54, Nos. 3-4, 301–308 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Pankov, Grassmannians of Classical Buildings, World Scientific, Singapore (2010).

    MATH  Google Scholar 

  13. F. D. Veldkamp, “Projective ring planes and their homomorphisms,” NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 160, pp. 289–350, Reidel, Dordrecht (1985).

    Google Scholar 

  14. Z.-X. Wan, “Geometry of matrices,” Adv. Stud. Pure Math., 24, 443–453 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blunck.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 74, Proceedings of the International Conference “Modern Algebra and Its Applications” (Batumi, 2010), Part 1, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blunck, A., Havlicek, H. Geometries on σ-Hermitian matrices. J Math Sci 186, 715–719 (2012). https://doi.org/10.1007/s10958-012-1021-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-1021-y

Keywords

Navigation