Skip to main content
Log in

Divisibility theory in commutative rings: Bezout monoids

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A ubiquitous class of lattice ordered semigroups introduced by Bosbach, which we call Bezout monoids, seems to be the appropriate structure for the study of divisibility in various classical rings like GCD domains (including UFD’s), rings of low dimension (including semi-hereditary rings), as well as certain subdirect products of such rings and certain factors of such subdirect products. A Bezout monoid is a commutative monoid S with 0 such that under the natural partial order (for a, bS, abSbSaS), S is a distributive lattice, multiplication is distributive over both meets and joins, and for any x, yS, if d = xy and dx 1 = x then there is a y 1S with dy 1 = y and x 1y 1 = 1. We investigate Bezout monoids by using filters and m-prime filters, and describe all homorphisms between them. We also prove analogues of the Pierce and the Grothendieck sheaf representations of rings for Bezout monoids. The question whether Bezout monoids describe divisibility in Bezout rings (rings whose finitely generated ideals are principal) is still open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Anderson, “Multiplication ideals, multiplication rings, and the ring R(X),” Can. J. Math., 28, No. 4, 760–768 (1976).

    Article  MATH  Google Scholar 

  2. P. N. Ánh, L. Márki, and P. Vámos, “Divisibility theory in commutative rings: Bezout monoids,” Trans. Am. Math. Soc. (to appear).

  3. P. N. Ánh and M. Siddoway, “Divisibility theory of semi-hereditary rings,” Proc. Am. Math. Soc. (to appear).

  4. G. Birkhoff, Lattice Theory, Am. Math. Soc. Colloq. Publ., Vol. XXV, Am. Math. Soc., Providence, Rhode Island (1967).

  5. B. Bosbach, “Komplementare Halbgruppen: Axiomatik und Arithmetik,” Fund. Math., 64, 257–287 (1969).

    MathSciNet  MATH  Google Scholar 

  6. B. Bosbach, “Zur Theorie der Teilbarkeitshalbgruppen,” Semigroup Forum, 3, No. 1, 1–30 (1971/72).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bosbach, “Concerning bricks,” Acta Math. Acad. Sci. Hung. 38, Nos. 1-4, 89–104 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bosbach, “Representable divisibility semigroups,” Proc. Edinburgh Math. Soc. (2), 34, No. 1, 45–64 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. H. Clifford, “Naturally totally ordered commutative semigroups,” Am. J. Math., 76, 631–646 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. L. Dubreil-Jacotin, L. Lesieur, and R. Croisot, Leçons sur la théorie des treillis des structures algébriques ordonnées et des treillis géométriques, Gauthier-Villars, Paris (1953).

    MATH  Google Scholar 

  11. L. Fuchs, “Über die Ideale arithmetischer Ringe,” Comment. Math. Helv., 23, 334–341 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Fuchs and L. Salce, Modules over Valuation Domains, Lect. Notes Pure Appl. Math., 97, Marcel Dekker, New York (1985).

    MATH  Google Scholar 

  13. L. Gillman and M. Henriksen, “Rings of continuous functions in which every finitely generated ideal is principal,” Trans. Am. Math. Soc., 82, 366–391 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Henriksen, “Some remarks on elementary divisor rings, II,” Michigan Math. J., 3, 159–163 (1955/56).

    Article  MathSciNet  Google Scholar 

  15. P. Jaffard, “Contribution à la théorie des groupes ordonnés,” J. Math. Pures Appl. (9), 32, 203–280 (1953).

    MathSciNet  MATH  Google Scholar 

  16. P. Jaffard, Les systèmes d’idéaux, Dunod, Paris (1960).

    MATH  Google Scholar 

  17. I. Kaplansky, “Elementary divisors and modules,” Trans. Am. Math. Soc., 66, 464–491 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. D. Larsen, W. J. Lewis, and T. S. Shores, “Elementary divisor rings and finitely presented modules,” Trans. Am. Math. Soc., 187, 231–248 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Ohm, “Semi-valuations and groups of divisibility,” Can. J. Math., 21, 576–591 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. S. Shores, “On generalized valuation rings,” Michigan Math. J., 21, 405–409 (1974).

    MathSciNet  Google Scholar 

  21. T. S. Shores and R. Wiegand, “Rings whose finitely generated modules are direct sums of cyclics,” J. Algebra, 32, 152–172 (1974).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Ánh.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 74, Proceedings of the International Conference “Modern Algebra and Its Applications” (Batumi, 2010), Part 1, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ánh, P.N., Márki, L. & Vámos, P. Divisibility theory in commutative rings: Bezout monoids. J Math Sci 186, 694–700 (2012). https://doi.org/10.1007/s10958-012-1016-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-1016-8

Keywords

Navigation