Skip to main content
Log in

Stability of solutions to differential equations of neutral type

Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider systems of quasilinear delay differential equations of neutral type and establish the condition of stability of the zero solution, as well as uniform estimates for the solution on the half-axis. In the case of asymptotic stability, these estimates provides the decay rate of the solution at infinity. Bibliography: 17 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. N. N. Krasovskii, Some Problems in the Theory of Stability of Motion [in Russina], Fizmatgiz, Moscow (1959).

    Google Scholar 

  2. L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments [in Russian], Nauka, Moscow (1971): English transl.: Academic Press, New York etc. (1973).

  3. J. Hale, Theory of Functional Differential Equations, Springer, New York etc. (1977).

    Book  MATH  Google Scholar 

  4. D. G. Korenevskij, Stability of Dynamic Systems under Random Perturbations of Parameters. Algebraic Criteria [in Russian], Nauk. Dumka, Kiev (1989).

  5. K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time–Ddelay Systems, Birkhäuser, Boston (2003).

    Book  Google Scholar 

  6. Yu. L. Daletskij and M. G. Krejn, Stability of Solutions of Differential Equations in Banach Space [in Russian], Nauka, Moscow (1970); English transl.: Am. Math. Soc., Providence, RI (1974).

  7. S. K. Godunov, Modern Aspects of Linear Algebra [in Russian], Nauchnaya Kniga (IDMI), Novosibirsk (1997): English transl.: Am. Math. Soc., Providence, RI (1998).

  8. V. L. Kharitonov and A. P. Zhabko, “Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems,” Automatica 39, No. 1, 15–20 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. L. Kharitonov and D. Hinrichsen, “Exponential estimates for time delay systems,” Systems Control Lett. 53, No. 5, 395–405 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Mondié and V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: an LMI approach” IEEE Trans. Automat. Control. 50, No. 2, 268–273 (2005).

    Article  MathSciNet  Google Scholar 

  11. V. Kharitonov, S. Mondié, and J. Collado, “Exponential estimates for neutral time-delay systems: an LMI approach,” IEEE Trans. Automat. Control. 50, No. 5, 666–670 (2005).

    Article  MathSciNet  Google Scholar 

  12. D. Ya. Khusainov, A. F. Ivanov, and A. T. Kozhametov, “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay” [in Russian], Differ. Uravn. 41, No. 8, 1137–1140 (2005); English transl.: Differ. Equ. 41, No. 8, 1196–1200 (2005).

    MathSciNet  Google Scholar 

  13. G. V. Demidenko and I. I. Matveeva, Asymptotic properties of solutions to differential equations with dealyed argument” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 5, No. 3, 20–28 (2005).

    MATH  Google Scholar 

  14. G. V. Demidenko and I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms” [in Russian], Sib. Mat. Zh. 48, No. 5, 1025–1040 (2007); English transl.: Sib. Math. J. 48, No. 5, 824–836 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type,” J. Anal. Appl. 7, No. 3, 119–130 (2009).

    MathSciNet  MATH  Google Scholar 

  16. D. Melchor-Aguilar and S. I. Niculescu, “Estimates of the attraction region for a class of nonlinear time-delay systems,” IMA J. Math. Control Inform. 24, No. 4, 523–550 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Martynyuk and R. Gutovski, Integral Inequalities and Stability of Motion [in Russian], Nauk. Dumka, Kiev (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Demidenko.

Additional information

Translated from Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika 10, No. 3, 2010, pp. 17–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidenko, G.V., Kotova, T.V. & Skvortsova, M.A. Stability of solutions to differential equations of neutral type. J Math Sci 186, 394–406 (2012). https://doi.org/10.1007/s10958-012-0994-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0994-x

Keywords

Navigation