We consider systems of quasilinear delay differential equations of neutral type and establish the condition of stability of the zero solution, as well as uniform estimates for the solution on the half-axis. In the case of asymptotic stability, these estimates provides the decay rate of the solution at infinity. Bibliography: 17 titles.
References
N. N. Krasovskii, Some Problems in the Theory of Stability of Motion [in Russina], Fizmatgiz, Moscow (1959).
L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments [in Russian], Nauka, Moscow (1971): English transl.: Academic Press, New York etc. (1973).
J. Hale, Theory of Functional Differential Equations, Springer, New York etc. (1977).
D. G. Korenevskij, Stability of Dynamic Systems under Random Perturbations of Parameters. Algebraic Criteria [in Russian], Nauk. Dumka, Kiev (1989).
K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time–Ddelay Systems, Birkhäuser, Boston (2003).
Yu. L. Daletskij and M. G. Krejn, Stability of Solutions of Differential Equations in Banach Space [in Russian], Nauka, Moscow (1970); English transl.: Am. Math. Soc., Providence, RI (1974).
S. K. Godunov, Modern Aspects of Linear Algebra [in Russian], Nauchnaya Kniga (IDMI), Novosibirsk (1997): English transl.: Am. Math. Soc., Providence, RI (1998).
V. L. Kharitonov and A. P. Zhabko, “Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems,” Automatica 39, No. 1, 15–20 (2003).
V. L. Kharitonov and D. Hinrichsen, “Exponential estimates for time delay systems,” Systems Control Lett. 53, No. 5, 395–405 (2004).
S. Mondié and V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: an LMI approach” IEEE Trans. Automat. Control. 50, No. 2, 268–273 (2005).
V. Kharitonov, S. Mondié, and J. Collado, “Exponential estimates for neutral time-delay systems: an LMI approach,” IEEE Trans. Automat. Control. 50, No. 5, 666–670 (2005).
D. Ya. Khusainov, A. F. Ivanov, and A. T. Kozhametov, “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay” [in Russian], Differ. Uravn. 41, No. 8, 1137–1140 (2005); English transl.: Differ. Equ. 41, No. 8, 1196–1200 (2005).
G. V. Demidenko and I. I. Matveeva, Asymptotic properties of solutions to differential equations with dealyed argument” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 5, No. 3, 20–28 (2005).
G. V. Demidenko and I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms” [in Russian], Sib. Mat. Zh. 48, No. 5, 1025–1040 (2007); English transl.: Sib. Math. J. 48, No. 5, 824–836 (2007).
G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type,” J. Anal. Appl. 7, No. 3, 119–130 (2009).
D. Melchor-Aguilar and S. I. Niculescu, “Estimates of the attraction region for a class of nonlinear time-delay systems,” IMA J. Math. Control Inform. 24, No. 4, 523–550 (2007).
A. A. Martynyuk and R. Gutovski, Integral Inequalities and Stability of Motion [in Russian], Nauk. Dumka, Kiev (1979).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Vestnik Novosibirskogo Gosudarstvennogo Universiteta: Seriya Matematika, Mekhanika, Informatika 10, No. 3, 2010, pp. 17–29.
Rights and permissions
About this article
Cite this article
Demidenko, G.V., Kotova, T.V. & Skvortsova, M.A. Stability of solutions to differential equations of neutral type. J Math Sci 186, 394–406 (2012). https://doi.org/10.1007/s10958-012-0994-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-012-0994-x