Skip to main content
Log in

Characterization of integrals with respect to arbitrary radon measures by the boundedness indices

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The problem of characterization of integrals as linear functionals is considered in the paper. It starts from the familiar results of F. Riesz (1909) and J. Radon (1913) on integral representation of bounded linear functionals by Riemann–Stieltjes integrals on a segment and by Lebesgue integrals on a compact in \( {\mathbb{R}^n} \), respectively. After works of J. Radon, M. Fréchet, and F. Hausdorff the problem of characterization of integrals as linear functionals took the particular form of the problem of extension of Radon’s theorem from \( {\mathbb{R}^n} \) to more general topological spaces with Radon measures. This problem has turned out difficult and its solution has a long and rich history. Therefore, it may be naturally called the Riesz–Radon–Fréchet problem of characterization of integrals. The important stages of its solution are connected with such mathematicians as S. Banach, S. Saks, S. Kakutani, P. Halmos, E. Hewitt, R. E. Edwards, N. Bourbaki, V. K. Zakharov, A. V. Mikhalev, et al. In this paper, the Riesz–Radon–Fr´echet problem is solved for the general case of arbitrary Radon measures on Hausdorff spaces. The solution is given in the form of a general parametric theorem in terms of a new notion of the boundedness index of a functional. The theorem implies as particular cases well-known results of the indicated authors characterizing Radon integrals for various classes of Radon measures and topological spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Éléments de mathématique. Fasc. XXXV. Livre VI: Intégration. Chap. IX: Intégration sur les espaces topologiques séparés, Actualitées Scientifiques et Industrielles, Vol. 1343, Hermann & Cie, Paris (1969).

  2. N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure Appl. Math., Vol. 7, Interscience Publishers, New York (1958).

  3. R. E. Edwards, “A theory of Radon measures on locally compact spaces,” Acta Math., 89, 133–164 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Engelking, General Topology, Heldermann, Berlin (1989).

    MATH  Google Scholar 

  5. D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London (1974).

    Book  MATH  Google Scholar 

  6. P. R. Halmos, Measure Theory, Van Nostrand, New York (1950).

    MATH  Google Scholar 

  7. F. Hausdorff, Grundz¨uge der Mengenlehre, Veit, Leipzig (1914).

  8. F. Hausdorff, Set Theory, Chelsea (1962).

  9. E. Hewitt, “Integration on locally compact spaces. I,” Univ. Washington Publ. Math., 3, 71–75 (1952).

    MathSciNet  Google Scholar 

  10. E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer, Berlin (1965).

  11. K. Jacobs, Measure and Integral, Academic Press, New York (1978).

    MATH  Google Scholar 

  12. T. Jech, Set Theory, Springer Monographs Math., Springer, Berlin (2002).

  13. S. Kakutani, “Concrete representation of abstract (M)-spaces,” Ann. Math. (2), 42, 994–1024 (1941).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Radon, “Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsber. Math.-Natur. Kl. Akad. Wiss. Wien, 122, 1295–1438 (1913).

    MATH  Google Scholar 

  15. F. Riesz, “Sur les opérations fonctionelles linéaires,” C. R. Acad. Sci. Paris, 149, 974–977 (1909).

    Google Scholar 

  16. Z. Semadeni, Banach Spaces of Continuous Functions, Monografie Matematyczne, Vol. 55, PWN, Warszawa (1971).

  17. V. K. Zakharov, “Alexandrovian cover and Sierpińskian extension,” Stud. Sci. Math. Hung., 24, No. 2-3, 93–117 (1989).

    MATH  Google Scholar 

  18. V. K. Zakharov, “Problem of characterization of Radon integrals,” Dokl. Math., 66, No. 1, 118–120 (2002).

    MATH  Google Scholar 

  19. V. K. Zakharov, “The Riesz–Radon problem of characterizing of integrals and the weak compactness of Radon measures,” Proc. Steklov Inst. Math., 248, 101–110 (2005).

    Google Scholar 

  20. V. K. Zakharov and A. V. Mikhalev, “Integral representation for Radon measures on an arbitrary Hausdorff space,” Fundam. Prikl. Mat., 3, No. 4, 1135–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  21. V. K. Zakharov and A. V. Mikhalev, “The problem of integral representation for Radon measures on a Hausdorff space,” Dokl. Math., 57, No. 3, 337–339 (1998).

    MathSciNet  Google Scholar 

  22. V. K. Zakharov and A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space,” Izv. Math., 63, No. 5, 881–921 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. K. Zakharov and A. V. Mikhalev, “The problem of the general Radon representation for an arbitrary Hausdorff space. II,” Izv. Math., 66, No. 6, 1087–1101 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Riesz–Radon–Fréchet problem of characterization of Radon integrals: bounded measures; positive measures; bimeasures; general Radon measures,” in: Modern Problems of Math., Mech., and Their Appl. Materials of Int. Conf. Dedicated to the 70th Anniv. of Rector of MSU Acad. V. A. Sadovnichy [in Russian], Universitetskaia Kniga, Moscow (2009), pp. 91–92.

  25. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Characterization of Radon integrals as linear functionals,” Fundam. Prikl. Mat., 16, No. 8, 87–161 (2010).

    MathSciNet  Google Scholar 

  26. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “Riesz–Radon–Fréchet problem of characterization of integrals,” Russ. Math. Surv., 65, No. 4, 741–765 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “The description of all integrals with respect to Radon measures on an arbitrary Hausdorff space,” in: Modern Problems of Function Theory and Applications. Materials of 15th Saratov Winter School Dedicated to the 125th Anniversary of V. V. Golubev and Centennial of Saratov State University [in Russian], Saratov State Univ., Saratov (2010), pp. 76–77.

  28. V. K. Zakharov, A. V. Mikhalev, and T. V. Rodionov, “The problem of characterization of general Radon integrals,” Dokl. Math., 82, No. 1, 613–616 (2010).

    Article  MATH  Google Scholar 

  29. V. K. Zakharov and T. V. Rodionov, “A class of uniform functions and its relationship with the class of measurable functions,” Math. Notes, 84, No. 5-6, 756–770 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Zakharov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 1, pp. 107–126, 2011/12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, V.K., Mikhalev, A.V. & Rodionov, T.V. Characterization of integrals with respect to arbitrary radon measures by the boundedness indices. J Math Sci 185, 417–429 (2012). https://doi.org/10.1007/s10958-012-0924-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0924-y

Keywords

Navigation