Skip to main content
Log in

Effect of dissipative processes on the near-surface inhomogeneity of a hollow cylinder

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We formulate the basic relations of a mathematical model of mechanics of elastic deformable systems that describes the formation of a near-surface inhomogeneity caused by both the process of local mass displacement and dissipative processes. On this basis, we solve the problem of the stationary stress-strain state of an infinite hollow cylinder. It is shown that the near-surface inhomogeneity of the distribution of stresses and chemical potential is characterized by two parameters. One of them is related to the local mass displacement, and the other is a consequence of dissipative processes in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Aéro and E. V. Kuvshinskii, “Basic equations of the theory of elasticity for media with rotational particle interaction,” Fiz. Tverd. Tela, 2, No. 7, 1399–1409 (1960).

    Google Scholar 

  2. Z. Boiko, “Stress-strain state of an elastic half-space with regard for dissipative processes in the course of the formation of near-surface inhomogeneity,” Fiz.-Mat. Model. Inform. Tekhnol., No. 9, 47–54 (2009).

  3. Z. Boiko, “Near-surface inhomogeneity of the stress-strain state of a solid cylinder with regard for dissipative processes,” Fiz.-Mat. Model. Inform. Tekhnol., No. 11, 19–28 (2010).

  4. Ya. Yo. Burak, “Defining relations of the local-gradient thermomechanics,” Dopov. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 19–23 (1987).

  5. Ya. Yo. Burak, H. I. Moroz, and Z. V. Boiko, “A mathematical model of thermomechanics with regard for dissipative processes in the course of the formation of near-surface phenomena,” Dopov. Nats. Akad. Nauk Ukr., No. 9, 65–71 (2008).

  6. Ya. Yo. Burak, H. I. Moroz, and Z. V. Boiko, “On the energy approach and thermodynamic foundations of the variational formulation of boundary-value problems of thermomechanics with regard for near-surface phenomena,” Mat. Metody Fiz.-Mekh. Polya, 52, No. 2, 55–65 (2009); English translation: J. Math. Sci., 170, No. 5, 629–641 (2010).

    Article  MathSciNet  Google Scholar 

  7. Ya. Yo. Burak, T. S. Nahirnyi, and O. R. Hrytsyna, “On one approach to taking into account near-surface inhomogeneity in the thermomechanics of solid solutions,” Dopov. Akad. Nauk Ukr., No. 11, 47–51 (1991).

  8. Ya. Yo. Burak, E. Ya. Chaplya, V. F. Kondrat, and O. R. Hrytsyna, “Mathematical modeling of thermomechanical processes in elastic bodies with regard for local mass displacement,” Dopov. Nats. Akad. Nauk Ukr., No. 6, 45–49 (2007).

  9. Ya. Burak, E. Chaplya, T. Nahirnyi, V. Chekurin, V. Kondrat, O. Chernukha, H. Moroz, and K. Chervinka, Physical and Mathematical Modeling of Complex Systems [in Ukrainian], SPOLOM, Lviv (2004).

  10. J. W. Gibbs, The Collected Works, Dover, New York (1960).

    Google Scholar 

  11. O. Hrytsyna, T. Nahirnyi, and K. Chervinka, “Local-gradient approach in thermomechanics,” Fiz.-Mat. Model. Inform. Tekhnol., No. 3, 72–83 (2006).

  12. V. F. Kondrat and O. R. Hrytsyna, “Equations of thermomechanics of deformable bodies with regard for irreversibility of local displacement of mass,” Mat. Metody Fiz.-Mekh. Polya, 51, No. 1, 169–177 (2008); English translation: J. Math. Sci., 160, No. 4, 492–502 (2009).

    Article  MathSciNet  Google Scholar 

  13. Ya. S. Podstrigach and Yu. Z. Povstenko, Introduction to the Mechanics of Surface Phenomena in Deformable Solids [in Russian], Naukova Dumka, Kiev (1985).

  14. Ya. S. Podstrigach, P. R. Shevchuk, T. M. Onufrik, and Yu. Z. Povstenko, “Surface phenomena in solids with regard for the interrelation of physicomechanical processes,” Fiz.-Khim. Mekh. Mater., 11, No. 2, 36–43 (1975).

    Google Scholar 

  15. Ya. Yo. Burak and E. Ya. Chaplya, “Thermodynamic aspects of subsurface phenomena in thermoelastic systems,” Fiz.-Khim. Mekh. Mater., 42, No. 1, 39–44 (2006); English translation: Mater. Sci., 42, No. 1, 34–41 (2006).

    Article  Google Scholar 

  16. K. L. Chowdhury and P. G. Glockner, “On thermoelastic dielectrics,” Int. J. Solids Struct., 13, 1173–1182 (1977).

    Article  Google Scholar 

  17. B. Collet, “Shock waves in deformable ferroelectric materials,” in: G. A. Maugin (editor), Proc. IUTAM-IUPAP Symp. “The Mechanical Behavior of Electromagnetic Solid Continua” (Paris, 1983), North-Holland, Amsterdam (1984), pp. 157–163.

    Google Scholar 

  18. A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci., 10, No. 3, 233–248 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. C. Eringen, Nonlocal Continuum Field Theories, Springer, New York (2002).

    MATH  Google Scholar 

  20. A. C. Eringen, “Nonlocal continuum mechanics based on distributions,” Int. J. Eng. Sci., 44, No. 3–4, 141–147 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. C. Eringen, Polar and Nonlocal Theories of Continua, Boğaziçi Univ., Istanbul (1974).

    Google Scholar 

  22. M. Lazar and G. A. Maugin, “A note on line forces in gradient elasticity,” Mech. Res. Commun., 33, No. 5, 674–680 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Lazar and G. A. Maugin, “Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity,” Int. J. Eng. Sci., 43, No. 13–14, 1157–1184 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. X. F. Li, J. S. Yang, and Q. Jiang, “Spatial dispersion of short surface acoustic waves in piezoelectric ceramics,” Acta Mech., 180, No. 1–4, 11–20 (2005).

    Article  MATH  Google Scholar 

  25. G. A. Maugin, “Nonlocal theories or gradient-type theories: A matter of convenience?” Arch. Mech., 31, 15–26 (1979).

    MathSciNet  MATH  Google Scholar 

  26. R. D. Mindlin, “Elasticity, piezoelectricity and crystal lattice dynamics,” J. Elast., 2, No. 4, 217–282 (1972).

    Article  Google Scholar 

  27. K. Santaoja, “Gradient theory from the thermomechanics point of view,” Eng. Fract. Mech., 71, No. 4–6, 557–566 (2004).

    Article  Google Scholar 

  28. Z. Tang, S. Shen, and S. N. Atluri, “Analysis of materials with strain-gradient effects: a meshless local Petrov–Galerkin (MLPG) approach, with nodal displacements only,” Comput. Model. Eng. & Sci., 4, No. 1, 177–196 (2003).

    MATH  Google Scholar 

  29. R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Ration. Mech. Anal., 11, 385–414 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Truesdell and R. A. Toupin, “The classical field theory,” in: S. Flügge (editor), Handbuch der Physik, Vol. III/1, Springer, Berlin (1960), pp. 226–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 54, No. 2, pp. 79–88, April–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burak, Y.Y., Nahirnyi, T.S. & Boiko, Z.V. Effect of dissipative processes on the near-surface inhomogeneity of a hollow cylinder. J Math Sci 184, 88–100 (2012). https://doi.org/10.1007/s10958-012-0855-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0855-7

Keywords

Navigation