Skip to main content
Log in

Hochschild cohomology of the integral group ring of the semidihedral group

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The Hochschild cohomology group for the integral group ring of the semidihedral 2-group SD2k is computed. In calculations, the free bimodule resolution of the corresponding group ring is used. In turn, to construct it the usual resolution of the trivial SD2k-module \(\mathbb{Z}\) was first built. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Eilenberg and S. MacLane, “Cohomology theory in abstract groups. I,” Ann. Math., 48 51–78 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton (1956).

    MATH  Google Scholar 

  3. M. Gerstenhaber, “The cohomology structure of an associative ring,” Ann. Math., 78, 267–288 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. F. Siegel and S. J. Witherspoon, “The Hochschild cohomology ring of a group algebra,” Proc. London Math. Soc., 79, 131–157 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Erdmann and Th. Holm, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class An,” Forum Math., 11, 177–201 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. I: the family \(D\left( {3{\mathcal K}} \right)\) in characteristic 2,” Algebra Analiz, 16, No. 6, 53–122 (2004).

    MathSciNet  Google Scholar 

  7. K. Erdmann, “Blocks of tame representation type and related algebras,” Lecture Notes Math., 1428, Berlin, Heidelberg (1990).

  8. A. I. Generalov, “Hochschild cohomology of algebras of quaternion type. I: generalized quaternion groups,” Algebra Analiz, 18, No. 1, 55–107 (2006).

    MathSciNet  Google Scholar 

  9. A. I. Generalov, A. A. Ivanov, and S. O. Ivanov, “Hochschild cohomology of algebras of quaternion type. II: The family \(Q{\left( {2{\mathcal B}} \right)_1}\) in characteristic 2,” Zap. Nauchn. Semin. POMI, 349, 53–134 (2007).

    Google Scholar 

  10. A. I. Generalov, “Hochschild cohomology of algebras of quaternion type. III: Algebras with a small parameter,” Zap. Nauchn. Semin. POMI, 356, 46–84 (2008).

    Google Scholar 

  11. A. I. Generalov and N. Yu. Kossovskaya, “Hochschild cohomology of the Liu-Schulz algebras,” Algebra Analiz, 18, No. 4, 39–82 (2006).

    Google Scholar 

  12. A. I. Generalov, “Hochschild cohomology of the integral group algebra of the dihedral group. I. Even case,” Algebra Analiz, 19, No. 5, 70–123 (2007).

    MathSciNet  Google Scholar 

  13. T. Hayami, “Hochschild cohomology ring of the integral group algebra of dihedral groups,” Tsukuba J. Math., 31, 99–127 (2007).

    MathSciNet  MATH  Google Scholar 

  14. T. Hayami, “Hochschild cohomlogy ring of the integral group ring of the generalized quaternion group,” SUT J. Math., 38, No. 1, 83–126 (2002).

    MathSciNet  MATH  Google Scholar 

  15. T. Hayami, “On Hochschild cohomology ring of the integral group ring of the quaternion group,” Tsukuba J. Math., 29, No. 2, 363–387 (2005).

    MathSciNet  MATH  Google Scholar 

  16. T. Holm, “Hochschild cohomology of tame blocks,” J. Algebra, 271, 798–826 (2002).

    Article  MathSciNet  Google Scholar 

  17. K. Erdmann. Th. Holm, and N. Snashall, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class A n . II,” Algebras and Repr. Theory, 5, 457–482 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. A. Kachalova, “Hochschild cohomology for Möbius algebras,” Zap. Nauchn. Semin. POMI, 330, 173–200 (2006).

    MATH  Google Scholar 

  19. A. A. Ivanov, “Hochschild cohomology of algebras of quaternion type: the family \(Q{\left( {2{\mathcal B}} \right)_1}\left( {k,s,a,c} \right)\) over a field with characteristic different from 2,” Vestn. Peterburg Univ.. Ser.1, Math. Mekh., Astr., No. 1 63–72 (2010).

  20. A. I. Generalov and S. O. Ivanov, “Bimodule resolution of a group algebra,” Zap. Nauchn. Semin. POMI, 365, 143–150 (2009).

    MathSciNet  Google Scholar 

  21. C. T. C. Wall, “Resolutions for extensions of groups,” Proc. Cambridge Phil. Soc., 57, No. 2, 251–255 (1961).

    Article  MATH  Google Scholar 

  22. T. Hayami, “Hochschild cohomology ring of the integral group ring of the semidihedral 2-groups,” Algebra Colloq., 18, No. 2, 241–258 (2011).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Generalov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 388, 2011, pp. 119–151.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Generalov, A.I. Hochschild cohomology of the integral group ring of the semidihedral group. J Math Sci 183, 640–657 (2012). https://doi.org/10.1007/s10958-012-0829-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0829-9

Keywords

Navigation