Skip to main content
Log in

Quasimorphisms, random walks, and transient subsets in countable groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study the interrelations between the theory of quasimorphisms and the theory of random walks on groups, and establish the following transience criterion for subsets of groups: if a subset of a countable group has bounded images under any three linearly independent homogeneous quasimorphisms on the group, the this subset is transient for all nondegenerate random walks on the group. From this it follows, by results of M. Bestvina, K. Fujiwara, J. Birman, W. Menasco, and others, that, in a certain sense, generic elements in the mapping class groups of surfaces are pseudo-Anosov, generic braids in Artin’s braid groups represent prime links and knots, generic elements in the commutant of every nonelementary hyperbolic group have large stable commutator length, etc. Bibliography: 20 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bavard, “Longueur stable des commutateurs,” Enseign. Math., 37, 109–150 (1991).

    MathSciNet  MATH  Google Scholar 

  2. C. Berge and V. Chvátal (eds.), Topics on Perfect Graphs, North-Holland, Amsterdam (1984).

    MATH  Google Scholar 

  3. M. Bestvina and K. Fujiwara, “Bounded cohomology of subgroups of mapping class groups,” Geom. Topol., 6, 69–89 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bestvina and K. Fujiwara, “Quasi-homomorphisms on mapping class groups,” Glas. Mat., 42, No. 1, 213–236 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Björklund and T. Harnick, “Biharmonic functions on groups and limit theorems for quasimorphisms along random walks,” Geom. Topol., 15, 123–143 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Calegari and J. Maher, “Statistics and compression of scl,” arXiv:1008.4952 (2010).

  7. R. P. Dilworth, “A decomposition theorem for partially ordered sets,” Ann. Math., 51, No. 1, 161–166 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Engel, Sperner Theory, Cambridge Univ. Press, Cambridge–New York (1997).

    Book  MATH  Google Scholar 

  9. T. Ito, “Braid ordering and the geometry of closed braid,” Geom. Topol., 15, 473–498 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Ito, “Braid ordering and knot genus,” arXiv:0805.2042 (2008).

  11. E. Kowalski, The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups, Cambridge Univ. Press, Cambridge (2008).

    Book  MATH  Google Scholar 

  12. A. Lubotzky and C. Meiri, Sieve methods in group theory II: The mapping class group, arXiv:1104.2450 (2011).

  13. J. Maher, “Random walks on the mapping class group,” Duke Math. J., 156, No. 3, 429–468 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Maher, “Exponential decay in the mapping class group,” arXiv:1104.5543 (2011).

  15. J. Malestein and J. Souto, “On genericity of pseudo-Anosovs in the Torelli group,” arXiv:1102.0601 (2011).

  16. A. V. Malyutin and N. Yu. Netsvetaev, “Dehornoy’s ordering on the braid group and braid moves,” St. Petersburg Math. J., 15, No. 3, 437–448 (2004).

    Article  MathSciNet  Google Scholar 

  17. I. Rivin, “Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms,” Duke Math. J., 142, No. 2, 353–379 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Rivin, “Walks on graphs and lattices – effective bounds and applications,” Forum Math., 21, No. 4, 673–685 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Rivin, “Zariski density and genericity,” Int. Math. Res. Not. IMRN, 19, 3649–3657 (2010).

    MathSciNet  Google Scholar 

  20. F. Spitzer, Principles of Random Walk, Springer-Verlag, New York–Heidelberg (1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malyutin.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 390, 2011, pp. 210–236.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malyutin, A.V. Quasimorphisms, random walks, and transient subsets in countable groups. J Math Sci 181, 871–885 (2012). https://doi.org/10.1007/s10958-012-0721-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0721-7

Keywords

Navigation