Skip to main content
Log in

The Monge problem in \( {\mathbb{R}^d} \): Variations on a theme

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In a recent paper, the authors proved that, under natural assumptions on the first marginal, the Monge problem in \( {\mathbb{R}^d} \) for the cost given by a general norm admits a solution. Although the basic idea of the proof is simple, it involves some complex technical results. Here we will give a proof of the result in the simpler case of a uniformly convex norm, and we will also use very recent results by Ahmad, Kim, and McCann. This allows us to reduce the technical burdens while still giving the main ideas of the general proof. The proof of the density of the transport set in the particular case considered in this paper is original. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ahmad, H. K. Kim, and R. McCann, “Optimal transportation, topology and uniqueness,” Bull. Math. Sci., 1, No. 1, 13–32 (2011).

    Article  MathSciNet  Google Scholar 

  2. L. Ambrosio, “Lecture notes on optimal transportation problems,” in: Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lect. Notes Math., 1812, Springer, Berlin (2003), pp. 1–52.

    Chapter  Google Scholar 

  3. L. Ambrosio, B. Kirchheim, and A. Pratelli, “Existence of optimal transport maps for crystalline norms,” Duke Math. J., 125, No. 2, 207–241 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Ambrosio and A. Pratelli, “Existence and stability results in the L 1 theory of optimal transportation,” in: Optimal Transportation and Applications (Martina Franca, 2001), Lect. Notes Math., 1813, Springer, Berlin (2003), pp. 123–160.

    Chapter  Google Scholar 

  5. G. Anzellotti and S. Baldo, “Asymptotic development by Γ-convergence,” Appl. Math. Optim., 27, No. 2, 105–123 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Attouch, “Viscosity solutions of minimization problems,” SIAM J. Optim., 6, No. 3, 769–806 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. A. Caffarelli, M. Feldman, and R. J. McCann, “Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs,” J. Amer. Math. Soc., 15, No. 1, 1–26 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Caravenna, “A proof of Sudakov theorem with strictly convex norms,” Math. Z., 268, Nos. 1–2, 371–407 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Champion and L. De Pascale, “The Monge problem for strictly convex norms in \( {\mathbb{R}^d} \),” J. Europ. Math. Soc., 12, No. 6, 1355–1369 (2010).

    Article  MATH  Google Scholar 

  10. T. Champion and L. De Pascale, “The Monge problem in \( {\mathbb{R}^d} \),” Duke Math. J., 157, No. 3, 551–572 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Champion, L. De Pascale, and P. Juutinen, “The ∞-Wasserstein distance: local solutions and existence of optimal transport maps,” SIAM J. Math. Anal., 40, No. 1, 1–20 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. C. Evans and W. Gangbo, Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem, Mem. Amer. Math. Soc., 137 (1999)

  13. L. V. Kantorovich, “On the translocation of masses,” C. R. Dokl. Acad. Sci. URSS, 37, 199–201 (1942).

    Google Scholar 

  14. L. V. Kantorovich, “On a problem of Monge,” Uspekhi Mat. Nauk., 3, 225–226 (1948).

    Google Scholar 

  15. G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie des Sciences de Paris (1781).

  16. A. Pratelli, “On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation,” Ann. Inst. H. Poincaré Probab. Statist., 43, No. 1, 1–13 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Pratelli, “On the sufficiency of c-cyclical monotonicity for optimality of transport plans,” Math. Z., 258, No. 3, 677–690 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Santambrogio, “Absolute continuity and summability of optimal transport densities: simpler proofs and new estimats,” Calc. Var. Partial Differential Equations, 36, No. 3, 343–354 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. N. Sudakov, “Geometric problems in the theory of infinite-dimensional probability distributions,” Proc. Steklov Inst. Math., 1979, No. 2, i–v, 1–178 (1979).

    MathSciNet  Google Scholar 

  20. N. S. Trudinger and X. J. Wang, “On the Monge mass transfer problem,” Calc. Var. Partial Differential Equations, 13, No. 1, 19–31 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence, Rhode Island (2003).

    MATH  Google Scholar 

  22. C. Villani, Optimal Transport. Old and New, Springer, Berlin–Heidelberg (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. De Pascale.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 390, 2011, pp. 182–200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champion, T., De Pascale, L. The Monge problem in \( {\mathbb{R}^d} \): Variations on a theme. J Math Sci 181, 856–866 (2012). https://doi.org/10.1007/s10958-012-0719-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0719-1

Keywords

Navigation