Skip to main content
Log in

A presentation of the average distance minimizing problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We talk about the following minimization problem:

$$ \min F\left( \Sigma \right): = \int\limits_\Omega {d\left( {x,\Sigma } \right){\text{d}}\mu (x),} $$

where Ω is an open subset of \( {\mathbb{R}^2} \), μ is a probability measure, and the minimum is taken over all sets \( \Sigma \subset \overline \Omega \) such that Σ is compact, connected, and \( {\mathcal{H}^1}\left( \Sigma \right) \leq {\alpha_0} \) for a given positive constant α 0. Bibliography: 21 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. The Clarendon Press, Oxford Univ. Press, New York (2000).

    MATH  Google Scholar 

  2. L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, Oxford Univ. Press, Oxford (2004).

    MATH  Google Scholar 

  3. D. Bucur, I. Fragalà, and J. Lamboley, “Optimal convex shapes for concave functionals,” to appear in ESAIM COCV.

  4. G. Buttazzo, E. Mainini, and E. Stepanov, “Stationary configurations for the average distance functional and related problems,” Control Cybernet., 38, No. 4A, 1107–1130 (2009).

    MathSciNet  Google Scholar 

  5. G. Buttazzo, E. Oudet, and E. Stepanov, “Optimal transportation problems with free Dirichlet regions,” in: Variational Methods for Discontinuous Structures, 51, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel (2002), pp. 41–65.

    Chapter  Google Scholar 

  6. G. Buttazzo, A. Pratelli, S. Solimini, and E. Stepanov, Optimal Urban Networks via Mass Transportation, Lect. Notes Math., 1961, Springer-Verlag, Berlin (2009).

    Book  MATH  Google Scholar 

  7. G. Buttazzo and F. Santambrogio, “Asymptotical compliance optimization for connected networks,” Netw. Heterog. Media, 2, No. 4, 761–777 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Buttazzo and E. Stepanov, “Optimal transportation networks as free Dirichlet regions for the Monge–Kantorovich problem,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, No. 4, 631–678 (2003).

    MathSciNet  MATH  Google Scholar 

  9. G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Amer. Math. Soc., Providence, Rhode Island (1993).

    MATH  Google Scholar 

  10. K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge (1986).

    Google Scholar 

  11. S. Jaffard, “Formalisme multifractal pour les fonctions,” C. R. Acad. Sci. Paris Sér. I Math., 317, No. 8, 745–750 (1993).

    MathSciNet  MATH  Google Scholar 

  12. S. Jaffard, “Old friends revisited: the multifractal nature of some classical functions,” J. Fourier Anal. Appl., 3, No. 1, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Jaffard, “Multifractal functions: recent advances and open problems,” Bull. Soc. Roy. Sci. Liège, 73, No. 2–3, 129–153 (2004).

    MathSciNet  MATH  Google Scholar 

  14. A. Lemenant, “About the regularity of average distance minimizers in \( {\mathbb{R}^2} \),” J. Conves Anal., 18, No. 4, 949–981 (2011).

    MATH  Google Scholar 

  15. A. Lemenant and E. Mainini, “On convex sets that minimize the average distance,” to appear in ESAIM COCV.

  16. F. Morgan, “(M, ϵ, δ)-minimal curve regularity,” Proc. Amer. Math. Soc., 120, No. 3, 677–686 (1994).

    MathSciNet  MATH  Google Scholar 

  17. S. Mosconi and P. Tilli, “Γ-convergence for the irrigation problem,” J. Convex Anal., 12, No. 1, 145–158 (2005).

    MathSciNet  MATH  Google Scholar 

  18. E. Paolini and E. Stepanov, “Qualitative properties of maximum distance minimizers and average distance minimizers in \( {\mathbb{R}^n} \),” J. Math. Sci. (N. Y.), 122, No. 3, 3290–3309 (2004).

    Article  MathSciNet  Google Scholar 

  19. F. Santambrogio and P. Tilli, “Blow-up of optimal sets in the irrigation problem,” J. Geom. Anal., 15, No. 2, 343–362 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Stepanov, “Partial geometric regularity of some optimal connected transportation networks,” J. Math. Sci. (N. Y.), 132, No. 4, 522–552 (2006).

    Article  MathSciNet  Google Scholar 

  21. P. Tilli, “Some explicit examples of minimizers for the irrigation problem,” J. Convex Anal., 17, No. 2, 583–595 (2010).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lemenant.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 390, 2011, pp. 117–146.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemenant, A. A presentation of the average distance minimizing problem. J Math Sci 181, 820–836 (2012). https://doi.org/10.1007/s10958-012-0717-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0717-3

Keywords

Navigation