Modification of a method of generalized separation of variables for the solution of multidimensional integral equations

We describe a method of generalized separation of variables for the solution of multidimensional integral equations and its modification minimizing the deviation of an approximate solution from the exact one. The convergence of the modified method is proved. A comparison of methods on the basis of numerical results is presented.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. L. Agranovskii and R. D. Baglai, “On one decomposition in a Hilbert space and its applications,” Zh. Vychisl. Mat. Mat. Fiz., 17, No. 4, 871–878 (1977).

    MathSciNet  Google Scholar 

  2. 2.

    Yu. G. Balyash and N. N. Voitovich, “Variational-iterative method for the solution of multidimensional integral equations,” in: Abstracts of the XXth Republican Conf. “Integral Equations in Applied Simulation” [in Russian], Institute of Electrodynamics, Ukrainian Academy of Sciences, Part 2, Kiev (1986), p. 23.

  3. 3.

    Yu. G. Balyash and N. N. Voitovich, “Approximate variational-iterative separation of variables in multidimensional problems,” in: Abstracts of the All-Union Symp. on Diffraction and Propagation of Waves “Waves and Diffraction-85” [in Russian], Tbilisi University, Vol. 1, Tbilisi (1985), p 122.

  4. 4.

    P. Vahin, B. Ostudin, and H. Shynkarenko, Foundations of Functional Analysis [in Ukrainian], Vydavnychyi Tsentr LNU, Lviv (2005).

    Google Scholar 

  5. 5.

    A. F. Verlan’ and I. A. Serikova, “On the problem of convergence of the variational-iterative method for the approximation of functions of two variables,” Tochn. Nadezh. Kiber. Sist., Issue 3, 10–12 (1975).

    Google Scholar 

  6. 6.

    M. M. Voitovych and S. A. Yaroshko, “Variational-iterative method for generalized separation of variables for the solution of multidimensional integral equations,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 4, 122–126 (1997).

    Google Scholar 

  7. 7.

    N. N. Voitovich, “Synthesis of a two-dimensional antenna array with generalized separation of variables,” Radiotekh. Élektron., 33, No. 12, 2637–2640 (1988).

    Google Scholar 

  8. 8.

    N. N. Voitovich and S. A. Yaroshko, “Numerical solution of the problem of synthesis of a two-dimensional antenna array,” Radiotekh. Élektron., 36, No. 1, 192–196 (1991).

    Google Scholar 

  9. 9.

    P. I. Kalenyuk, Ya. E. Baranetskii, and Z. M. Nytrebych, Generalized Method of Separation of Variables [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  10. 10.

    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  11. 11.

    V. V. Pospelov, On the Approximation of a Function of Several Variables by Products of Functions of One Variable [in Russian], Preprint No. 32, Institute of Applied Mathematics, Academy of Sciences of USSR, Moscow (1978).

  12. 12.

    V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  13. 13.

    Y. G. Balyash, N. N. Voitovych, and S. A. Yaroshko, “Generalized separation of variables in problems of diffraction and antenna synthesis,” in: Proceedings of the 1989-URSI International Symp. on Electromagnetic Theory (Stockholm, Sweden), Stockholm (1989), pp. 650–652.

  14. 14.

    V. Biletskyy, “An iterative method of generalized separation of variables for solving linear operator equations,” J. Numer. Appl. Math. (2009). (Submitted).

  15. 15.

    V. Biletskyy and S. Yaroshko, “A method of generalized separation of variables for solving many-dimensional linear Fredholm integral equation theory,” in: Proceeding of the XIIth International Seminar/Workshop “Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory” (Lviv, September 17–20, 2007) [in Ukrainian], Lviv (2007), pp. 94–97.

  16. 16.

    V. Biletskyy and S. Yaroshko, “A method of generalized separation of variables for solving three-dimensional integral equations theory,” in: Proceeding of the XI th International Seminar/Workshop “Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory” (Tbilisi, October 11–13, 2006) [in Ukrainian], Lviv–Tbilisi (2006), pp. 164–168.

  17. 17.

    O. Bulatsyk, B. Katsenelenbaum, Yu. Topolyuk, and N. Voitovich, Phase Optimization Problems. Applications in Wave Field Theory, Wiley–VCH, Weinheim (2010).

    Google Scholar 

  18. 18.

    L. de Lathauwer, B. de Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM J. Matrix Anal. Appl., 21, 1253–1278 (2000).

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, “Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems,” Computing, 74, 131–157 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    W. Hackbusch and B. Khoromskij, “Tensor-product approximation to operators and functions in high dimensions,” J. Complexity, 23, 697–714 (2007).

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    T. Kolda and B. Bader, Tensor Decompositions and Applications, Techn. Report SAND2007-6702, Sandia Nat. Laboratories (2007).

  22. 22.

    C. Navasca, L. de Lathauwer, and S. Kinderman, “Swamp reducing technique for tensor decompositions,” in: Proceedings of the 16th European Signal Processing Conf. (EUSIPCO 2008), Lausanne, Switzerland, August (2008).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Biletskyy.

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 53, No. 4, pp. 44–50, October–December, 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biletskyy, V.M. Modification of a method of generalized separation of variables for the solution of multidimensional integral equations. J Math Sci 181, 340–349 (2012). https://doi.org/10.1007/s10958-012-0689-3

Download citation

Keywords

  • Tensor Decomposition
  • Multidimensional Problem
  • Generalize Separation
  • Integral Equation Theory
  • European Signal Processing