Skip to main content
Log in

Algebraic relations for reciprocal sums of even terms in Fibonacci numbers

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbers \( \sum\limits_{n = 1}^\infty {F_{2n}^{ - 2s}} \), and second, for sums of evenly even and unevenly even types \( \sum\limits_{n = 1}^\infty {F_{4n}^{ - 2s}}, \sum\limits_{n = 1}^\infty {F_{4n - 2}^{ - 2s}} \). The numbers \( \sum\limits_{n = 1}^\infty {F_{4n - 2}^{ - 2s}}, \sum\limits_{n = 1}^\infty {F_{4n - 2}^{ - 4}} \), and are shown to be algebraically independent, and each sum \( \sum\limits_{n = 1}^\infty {F_{4n - 2}^{ - 2s}} \left( {s \geqslant 4} \right) \) is written as an explicit rational function of these three numbers over \( \mathbb{Q} \). Similar results are obtained for various series of even type, including the reciprocal sums of Lucas numbers \( \sum\limits_{n = 1}^\infty {L_{2n}^{ - p}}, \sum\limits_{n = 1}^\infty {L_{4n}^{ - p}} \), and \( \sum\limits_{n = 1}^\infty {L_{4n - 2}^{ - p}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965).

    Google Scholar 

  2. D. Duverney, Keiji Nishioka, Kumiko Nishioka, and I. Shiokawa, “Transcendence of Jacobi’s theta series,” Proc. Jpn. Acad. Ser. A. Math. Sci., 72, 202–203 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Duverney, Keiji Nishioka, Kumiko Nishioka, and I. Shiokawa, “Transcendence of Rogers–Ramanujan continued fraction and reciprocal sums of Fibonacci numbers,” Proc. Jpn. Acad. Ser. A. Math. Sci., 73, 140–142 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Elsner, Sh. Shimomura, and I. Shiokawa, “Algebraic relations for reciprocal sums of Fibonacci numbers,” Acta Arith., 130, No. 1, 37–60 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Elsner, Sh. Shimomura, and I. Shiokawa, “Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers,” Ramanujan J., 17, No. 3, 429–446 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Hancock, Theory of Elliptic Functions, Dover, New York (1958).

    MATH  Google Scholar 

  7. Yu. V. Nesterenko, “Modular functions and transcendence questions,” Sb. Math., 187, 1319–1348 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Ramanujan, “On certain arithmetical functions,” Trans. Cambridge Philos. Soc., 22, 159–184 (1916).

    Google Scholar 

  9. E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge Univ. Press, Cambridge (1927).

    MATH  Google Scholar 

  10. I. J. Zucker, “The summation of series of hyperbolic functions,” SIAM J. Math. Anal., 10, 192–206 (1979).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Elsner.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 16, No. 5, pp. 173–200, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsner, C., Shimomura, S. & Shiokawa, I. Algebraic relations for reciprocal sums of even terms in Fibonacci numbers. J Math Sci 180, 650–671 (2012). https://doi.org/10.1007/s10958-012-0663-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0663-0

Keywords

Navigation