Skip to main content
Log in

Binomial Thue equations, ternary equations and power values of polynomials

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We explicitly solve the equation Ax n− By n = ±1 and, along the way, we obtain new results for a collection of equations Ax n− By n = z m with m ∈ {3, n}, where x, y, z, A, B, and n are unknown nonzero integers such that n ≥ 3, AB = p α q β with nonnegative integers α and β and with primes 2 ≤ p < q < 30. The proofs depend on a combination of several powerful methods, including the modular approach, recent lower bounds for linear forms in logarithms, somewhat involved local considerations, and computational techniques for solving Thue equations of low degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Bennett, “Recipes for ternary diophantine equations of signature (p, p, k),” Proc. RIMS Kokyuroku, 1319, pp. 51–55 (2003).

    Google Scholar 

  2. M. A. Bennett, “Products of consecutive integers,” Bull. London Math. Soc., 36, 683–694 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. A. Bennett, K. Győry, M. Mignotte, and Á. Pintér, “Binomial Thue equations and polynomial powers,” Compositio Math., 142, 1103–1121 (2006).

    Article  MATH  Google Scholar 

  4. M. A. Bennett, V. Vatsal, and S. Yazdani, “Ternary Diophantine equations of signature (p, p, 3),” Compositio Math., 140, 1399–1416 (2004).

    MATH  MathSciNet  Google Scholar 

  5. Y. Bugeaud and K. Győry, “On binomial Thue–Mahler equations,” Period. Math. Hungar., 49, 25–34 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. Bugeaud, M. Mignotte, and S. Siksek, “A multi-Frey approach to some multi-parameter families of Diophantine equations,” Can. J. Math., 60, No. 3, 491–519 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Darmon and L. Merel, “Winding quotient and some variants of Fermat’s last theorem,” J. Reine Angew. Math., 490, 81–100 (1997).

    MATH  MathSciNet  Google Scholar 

  8. J. H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, “S-unit equations and their applications,” in: A. Baker, ed., New Advances in Transcendence Theory, Cambridge Univ. Press (1988), pp. 110–174.

  9. K. Győry, “Über die diophantische Gleichung x p + y p = cz p,” Publ. Math. Debrecen, 13, 301–305 (1966).

    MathSciNet  Google Scholar 

  10. K. Győry, “On the number of solutions of linear equations in units of an algebraic number field,” Comment. Math. Helv., 54, 583–600 (1979).

    Article  MathSciNet  Google Scholar 

  11. K. Győry, “Some recent applications of S-unit equations,” Astérisque, 209, 17–38 (1992).

    Google Scholar 

  12. K. Győry, “Applications of unit equations,” in: Analytic Number Theory, Kyoto (1996), 62–78.

  13. K. Győry and K. Yu, “Bounds for the solutions of S-unit equations and decomposable form equations,” Acta Arith., 123, 9–41 (2006).

    Article  MathSciNet  Google Scholar 

  14. K. Győry, I. Pink, and Á. Pintér, “Power values of polynomials and binomial Thue–Mahler equations,” Publ. Math. Debrecen, 65, 341–362 (2004).

    MathSciNet  Google Scholar 

  15. K. Győry and Á. Pintér, “On the resolution of equations Ax n− By n = C in integers x, y and n ≥ 3. I,” Publ. Math. Debrecen, 70, 483–501 (2007).

    MathSciNet  Google Scholar 

  16. E. Halberstadt and A. Kraus, “Courbes de Fermat: résultats et problémes,” J. Reine Angew. Math., 548, 167–234 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Kraus, “Majorations effectives pour l’équation de Fermat générelisée,” Can. J. Math., 49, 1139–1161 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Mignotte, “A kit of linear forms of three logarithms,” Publ. Ins. Rech. Math. Av. (Strasbourg), to appear.

  19. K. Ribet, “On the equation a p + 2α b p + c p = 0,” Acta Arith., 79, 7–16 (1997).

    MATH  MathSciNet  Google Scholar 

  20. J. P. Serre, “Sur les représentations modulaires de degré 2 deGal\( \left( {{{{\bar{\mathbb{Q}}}} \left/ {\mathbb{Q}} \right.}} \right) \),” Duke Math. J., 54, 179–230 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  21. T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge (1986).

    Book  MATH  Google Scholar 

  22. S. Siksek “The modular approach to Diophantine equations,” in: H. Cohen, Number Theory, Vol. II, Analytic and Modern Tools, Grad. Texts Math., Vol. 240, Springer, Berlin (2007), pp. 1107–1138.

    Google Scholar 

  23. V. G. Sprindzuk, Classical Diophantine Equations, Lect. Notes Math., Vol. 1559, Springer, Berlin (1993).

    Google Scholar 

  24. A. Wiles, “Modular elliptic curves and Fermat’s last theorem,” Ann. Math., 141, 443–551 (1995).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Győry or Á. Pintér.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 16, No. 5, pp. 61–77, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Győry, K., Pintér, Á. Binomial Thue equations, ternary equations and power values of polynomials. J Math Sci 180, 569–580 (2012). https://doi.org/10.1007/s10958-012-0656-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0656-z

Keywords

Navigation