Skip to main content
Log in

Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper presents results concerning the geometric invariant theory of completely integrable Hamiltonian systems and also the classification of integrable cases of low-dimensional and high-dimensional rigid body dynamics in a nonconservative force field. The latter problems are described by dynamical systems with variable dissipation. The first part of the work is the basis for the doctorial dissertation of V. V. Trofimov (1953–2003), which was already published in parts. However, in the present complete form, it has not appeared, and we decided to fill in this gap. The second part is a development of the results presented in the doctoral dissertation of M. V. Shamolin and has not appeared in the present variant. These two parts complement one another well, which initiated this work (its sketches already appeared in 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Agafonov, D. V. Georgievskii, and M. V. Shamolin, “Certain actual problems of geometry and mechanics. Abstract of sessions of workshop ‘Some Actual Problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 34 (2007).

    Google Scholar 

  2. R. R. Aidagulov and M. V. Shamolin, “A certain improvement of the Convey algorithm,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 53–55 (2005).

  3. R. R. Aidagulov and M. V. Shamolin, “Archimedean uniform structures. Abstracts of sessions of workshop ‘Actual problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 46–51 (2007).

    Google Scholar 

  4. R. R. Aidagulov and M. V. Shamolin, “Manifolds of uniform structures. Abstracts of sessions of workshop ‘Actual problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 71–86 (2007).

    Google Scholar 

  5. A. A. Andronov, A Collection of Works [in Russian], USSR Academy of Sciences, Moscow (1956).

    Google Scholar 

  6. A. A. Andronov and E. A. Leontovich, “Some cases of dependence of limit cycles on a parameter,” Uch. Zap. GGU, No. 6 (1937).

  7. A. A. Andronov and E. A. Leontovich, “To theory of variations of qualitative structure of partition of the plane into trajectories,” Dokl. Akad. Nauk SSSR, 21, No. 9 (1938).

    Google Scholar 

  8. A. A. Andronov and E. A. Leontovich, “On the birth of limit cycles from a nonrough focus or center and from a nonrough limit cycle,” Mat. Sb., 40, No. 2 (1956).

    Google Scholar 

  9. A. A. Andronov and E. A. Leontovich, “On the birth of limit cycles from a separatrix loop and from an equilibrium state of saddle-node type,” Mat. Sb., 48, No. 3 (1959).

    Google Scholar 

  10. A. A. Andronov and E. A. Leontovich, “Dynamical systems of the first nonroughness degree on the plane,” Mat. Sb., 68, No. 3 (1965).

    Google Scholar 

  11. A. A. Andronov and E. A. Leontovich, “Sufficient conditions for the first-degree nonroughness of a dynamical system on the plane,” Differ. Uravn., 6, No. 12 (1970).

    Google Scholar 

  12. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamical Systems [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  13. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Bifurcation Theory of Dynamical Systems on the Plane [in Russian], Nauka, Moscow (1967)

    Google Scholar 

  14. A. A. Andronov and L. S. Pontryagin, “Rough systems,” Dokl. Akad. Nauk SSSR, 14, No. 5, 247–250 (1937).

    Google Scholar 

  15. D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Tr. Mat. Inst. Akad. Nauk SSSR, 90 (1967).

  16. S. Kh. Aronson and V. Z. Grines, “Topological classification of flows on closed two-dimensional manifolds,” Usp. Mat. Nauk, 41, No. 1 (1986)

  17. V. I. Arnol’d, “On characteristic class entering quantization conditions,” Funkts. Anal. Prilozh., 1, No. 1, 1–14 (1967).

    Article  MATH  Google Scholar 

  18. V. I. Arnol’d, “Hamiltonian property of Euler equations of rigid body dynamics in an ideal fluid,” Usp. Mat. Nauk, 24, No. 3, 225–226 (1969).

    MATH  Google Scholar 

  19. V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  20. V. I. Arnol’d and A. B. Givental’, “Symplectic geometry,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 4, 5–139 (1985).

    MathSciNet  Google Scholar 

  21. V. I. Arnol’d, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical mechanics,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 3 (1985).

  22. D. Arrowsmith and C. Place, Ordinary Differential Equations, Qualitative Theory with Applications [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  23. G. F. Baggis, “Rough systems of two differential equations,” Usp. Mat. Nauk, 10, No. 4 (1955).

  24. E. A. Barashin and V. A. Tabueva, Dynamical Systems with Cylindrical Phase Space [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  25. N. N. Bautin, “On number of limit cycles born under variation of coefficients from an equilibrium state of focus or center type,” Mat. Sb., 30, No. 1 (1952).

    Google Scholar 

  26. N. N. Bautin, “Some methods for qualitative studying dynamical systems related to field turn,” Prikl. Mat. Mekh., 37, No. 6 (1973).

    Google Scholar 

  27. N. N. Bautin and E. A. Leontovich, Methods and Tools for Qualitative Studying Dynamical Systems on Plane [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  28. I. Bendixon, “On curves defined by differential equations,” Usp. Mat. Nauk, 9 (1941).

  29. M. Berger, Geometry [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  30. A. L. Besse, Manifolds All of Whose Geodesics Are Closed [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  31. J. Birkhoff, Dynamical Systems [Russian translation], Gostekhizdat, Moscow (1941).

    Google Scholar 

  32. J. A. Bliess, Lectures on the Calculus of Variations [Russian translation], Gostekhizdat, Moscow–Leningrad (1941).

    Google Scholar 

  33. O. I. Bogoyavlenskii, “Dynamics of a rigid body with n ellipsoidal holes filled with a magnetic fluid,” Dokl. Akad. Nauk SSSR, 272, No. 6, 1364–1367 (1983).

    MathSciNet  Google Scholar 

  34. O. I. Bogoyavlenskii, “Some integrable cases of Euler equations,” Dokl. Akad. Nauk SSSR, 287, No. 5, 1105–1108 (1986).

    MathSciNet  Google Scholar 

  35. O. I. Bogoyavlenskii and G. F. Ivakh, “Topological analysis of V. A. Steklov integrable cases,” Usp. Mat. Nauk, 40, No. 4, 145–146 (1985).

    MathSciNet  Google Scholar 

  36. A. V. Bolsinov, “Completeness criterion of a family of functions in involution constructed by argument shift method,” Dokl. Akad. Nauk SSSR, 301, No. 5, 1037–1040 (1988).

    Google Scholar 

  37. N. Bourbaki, Integration [Russian translation], Nauka, Moscow (1970).

    Google Scholar 

  38. N. Bourbaki, Lie Groups and Algebras [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  39. A. V. Brailov, “Involutive tuples on Lie algebras and scalar field extension,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 1, 7–51 (1983).

  40. A. V. Brailov, “Some cases of complete integrability of Euler equations and applications,” Dokl. Akad. Nauk SSSR, 268, No. 5, 1043–1046 (1983).

    MathSciNet  Google Scholar 

  41. A. D. Bryuno, Local Method for Nonlinear Analysis of Differential Equations [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  42. V. S. Buslaev and V. A. Nalimova, “Trace formula in Lagrangian Mechanics,” Teor. Mat. Fiz., 61, No. 1, 52–63 (1984).

    MathSciNet  Google Scholar 

  43. N. N. Butenina, “Bifurcations of separatrices and limit cycles of a two-dimensional dynamical system under field turn,” Differ. Uravn., 9, No. 8 (1973).

    Google Scholar 

  44. N. N. Butenina, “To bifurcation theory of dynamical systems under field turn,” Differ. Uravn., 10, No. 7 (1974).

  45. M. L. Byalyi, “On first polynomial integrals in impulses for a mechanical system on two-dimensional torus,” Funkts. Anal. Prilozh., 21, No. 4, 64–65 (1987).

    MathSciNet  Google Scholar 

  46. S. A. Chaplygin, Selected Works, [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  47. Dao Chiog Tkhi and A. T. Fomenko, Minimal Surfaces and Plateau Problem [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  48. P. Dazord, “Invariants homotopiques attachés aux fibrés simplectiques,” Ann. Inst. Fourier (Grenoble), 29, No. 2, 25–78 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  49. R. Delanghe, F. Sommen, and V. Sousek, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic, Dordrecht (1992).

    Book  MATH  Google Scholar 

  50. F. M. Dimentberg, Theory of Spatial Hinge Mechanisms [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  51. J. Dixmier, Universal Enveloping Algebras [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  52. C. T. G. Dodson, Categories, Bundles and Spacetime Topology, Kluwer Academic, Dordrecht (1988).

    MATH  Google Scholar 

  53. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Integrable system. I,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 4, 179–284 (1985).

    MathSciNet  Google Scholar 

  54. B. A. Dubrovin and S. P. Novikov, “On Poisson brackets of hydrodynamic type,” Dokl. Akad. Nauk SSSR, 279, No. 2, 294–297 (1984).

    MathSciNet  Google Scholar 

  55. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry, Methods and Applications [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  56. A. T. Fomenko, Symplectic Geometry [in Russian], Izd. Mosk. Unuv., Moscow (1988).

    Google Scholar 

  57. A. T. Fomenko, “Bordism theory of integrable Hamiltonian nondegenerate systems with two degrees of freedom. A new topological invariant of many-dimensional Hamiltonian systems,” Izv. Akad. Nauk SSSR, Ser. Mat., 55, No. 4, 747–779 (1991).

    MATH  Google Scholar 

  58. A. T. Fomenko and D. B. Fuks, A Course of Homotopical Topology [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  59. A. T. Fomenko and V. V. Trofimov, Integrable Systems on Lie Algebras and Symmetric Spaces, Gordon and Breach, New York (1988).

    Google Scholar 

  60. H. Fujimoto, “Examples of complete minimal surfaces in \( {\mathbb{R}^m} \) whose Gauss maps omit \( \frac{{m\left( {m + 1} \right)}}{2} \) hyperplanes in general positions,” Sci. Rep. Kanazawa Univ., 33, No. 2, 37–43 (1989).

    MATH  MathSciNet  Google Scholar 

  61. D. B. Fuks, “On Maslov–Arnol’d characteristic classes,” Dokl. Akad. Nauk SSSR, 178, No. 2, 303–306 (1968).

    MathSciNet  Google Scholar 

  62. D. V. Georgievskii and M. V. Shamolin, “Kinematics and geometry of masses of a rigid body with a fixed point in \( {\mathbb{R}^n} \),” Dokl. Ross. Akad. Nauk, 380, No. 1, 47–50 (2001).

    MathSciNet  Google Scholar 

  63. D. V. Georgievskii and M. V. Shamolin, “On kinematics of a rigid body with a fixed point in \( {\mathbb{R}^n} \). Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Fundam. Prikl. Mat., 7, No. 1, 315 (2001).

    Google Scholar 

  64. D. V. Georgievskii and M. V. Shamolin, “Generalized dynamical Euler equations for a rigid body with a fixed point in \( {\mathbb{R}^n} \),” Dokl. Ross. Akad. Nauk, 383, No. 5, 635–637 (2002).

    MathSciNet  Google Scholar 

  65. D. V. Georgievskii and M. V. Shamolin, “First integrals of equations of motion of generalized gyroscope in \( {\mathbb{R}^n} \),” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 5, 37–41 (2003).

  66. D. V. Georgievskii and M. V. Shamolin, “Valerii Vladimirovich Trofimov,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 5–6 (2007).

    Google Scholar 

  67. D. V. Georgievskii and M. V. Shamolin, “On kinematics of a rigid body with a fixed point in \( {\mathbb{R}^n} \). Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 24–25 (2007).

    Google Scholar 

  68. D. V. Georgievskii and M. V. Shamolin, “Generalized dynamical Euler equations for a rigid body with a fixed point in \( {\mathbb{R}^n} \). Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 30 (2007).

    Google Scholar 

  69. D. V. Georgievskii and M. V. Shamolin, “First integrals of equations of motion of generalized gyroscope in n-dimensional space. Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 31 (2007).

    Google Scholar 

  70. D. V. Georgievskii, V. V. Trofimov, and M. V. Shamolin, “Geometry and mechanics: problems, approaches, and methods. Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Fundam. Prikl. Mat., 7, No. 1, 301 (2001).

    Google Scholar 

  71. D. V. Georgievskii, V. V. Trofimov, and M. V. Shamolin, “On some topological invariants of flows with complex potential. Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Fundam. Prikl. Mat., 7, No. 1, 305 (2001).

    Google Scholar 

  72. D. V. Georgievskii, V. V. Trofimov, and M. V. Shamolin, “Geometry and mechanics; problems, approaches, and methods. Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 16 (2007).

    Google Scholar 

  73. D. V. Georgievskii, V. V. Trofimov, and M. V. Shamolin, “On some topological invariants of flows with complex potential. Abstracts of sessions of workshop ‘Actual Problems of Geometry and Mechanics’,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 23, 19 (2007).

    Google Scholar 

  74. V. V. Golubev, Lectures on Analytic Theory of Differential Equations [in Russian], Gostekhizdat, Moscow–Leningrad (1950).

    Google Scholar 

  75. V. V. Golubev, Lectures on Integrating Equations of Motion of a Heavy Rigid Body Around a Fixed Point [in Russian], Gostekhizdat, Moscow–Leningrad (1953).

    Google Scholar 

  76. G. V. Gorr, L. V. Kudryashova, and L. A. Stepanova, Classical Problems of Rigid Body Dynamics [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  77. D. N. Goryachev, “New cases of integrability of dynamical Euler equations,” Varshav. Univ. Izvestiya, Book 3, 1–15 (1916).

  78. M. De Gosson, “La définition de l’indice de Maslov sans hypothèse de transversalité,” C. R. Acad. Sci. Paris, 310, 279–282 (1990).

    MATH  Google Scholar 

  79. M. Goto and F. Grosshans, Semisimple Lie Algebras [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  80. P. Griffiths, Exterior Differential forms and Calculus of Variations [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  81. D. M. Grobman, “On homeomorphism of systems of differential equations,” Dokl. Akad. Nauk SSSR, 128, No. 5, 880–881 (1959).

    MATH  MathSciNet  Google Scholar 

  82. D. M. Grobmam, “Topological classification of neighborhoods of a singular point in n-dimensional space,” Mat. Sb., 56, No. 1, 77–94 (1962).

    MathSciNet  Google Scholar 

  83. M. Gromov, “Pseudo-holomorphic curves in symplectic manifolds,” Invent. Math., 82, 307–347 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  84. V. Guillemin and S. Sternberg, Geometric Asymptotics [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  85. V. Guillemin and S. Sternberg, Symplectic Technique in Physics, Cambridge Univ. Press, Cambridge (1984).

    Google Scholar 

  86. Ph. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  87. R. Harvey and H. B. Lawson, “Calibrated geometry,” Acta Math., 148, 47–157 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  88. S. Helgason, Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  89. H. Hess, “Connections on symplectic manifolds and geometric quantizations,” in: Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lect. Notes Math., Vol. 836, Springer, Berlin (1980), pp. 153–166.

  90. M. D. Hvidsten, “Volume and energy stability for isometric minimal immersions,” Illinois J. Math., 33, No. 3, 488–494 (1989).

    MATH  MathSciNet  Google Scholar 

  91. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets, Geometry and Quantization [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  92. M. Karasev and Yu. Vorobijev, “On analog of Maslov class in non-Lagrangian case,” in: Problems of Geometry, Topology and Mathematical Physics, New Developments in Global Analysis ser., Voronezh Univ. Press, Voronezh (1992), pp. 37–48.

    Google Scholar 

  93. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 1, Nauka, Moscow (1981).

    Google Scholar 

  94. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry [Russian translation], Vol. 2, Nauka, Moscow (1981).

    Google Scholar 

  95. A. N. Kolmogorov, “General theory of dynamical systems and classical mechanics,” in: Int. Math. Congress in Amsterdam [in Russian], Fizmatgiz, Moscow (1961), pp. 187–208.

    Google Scholar 

  96. A. I. Kostrikin, An Introduction to Algebra [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  97. V. V. Kozlov, Methods of Qualitative Analysis in Rigid Body Dynamics [in Russian], Izd. Mosk. Univ., Moscow (1980).

    Google Scholar 

  98. V. V. Kozlov, “Integrability and nonintegrability in Hamiltonian mechanics,” Usp. Mat. Nauk, 38, No. 1, 3–67 (1983).

    Google Scholar 

  99. V. V. Kozlov and N. N. Kolesnikov, “On integrability of Hamiltonian systems,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 88–91 (1979).

  100. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  101. S. Lang, Introduction to Theory of Differentiable Manifolds [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  102. Le Hgok T’euen, “Complete involutive tuples of functions on extensions of Lie algebras related to Frobenius algebras,” Tr. Semin. Vekt. Tenz. Anal., No. 22, 69–106 (1985).

  103. Le Hong Van, “Calibrations, minimal surfaces, and Maslov–Trofimov index,” in: Selected Problems in Algebra, Geometry, and Discrete Mathematics [in Russian], Moscow (1988), pp. 62–79.

  104. Le Hong Van and A. T. Fomenko, “Minimality criterion of Lagrangian submanifolds in Kälerian manifolds,” Mat. Zametki, 46, No. 4, 559–571 (1987).

    Google Scholar 

  105. S. Leftschets, Geometric Theory of Differential Equations [Russian translation], IL, Moscow (1961).

    Google Scholar 

  106. V. G. Lemlein, “On spaces of symmetric and almost symmetric connection,” Dokl. Akad. Nauk SSSR, 116, No. 4, 655–658 (1957).

    MathSciNet  Google Scholar 

  107. V. G. Lemlein, “Curvature tensor and certain types of spaces of symmetric and almost symmetric connection,” Dokl. Akad. Nauk SSSR, 117, No. 5, 755–758 (1957).

    MathSciNet  Google Scholar 

  108. E. A. Leontovich and A. G. Maier, “On trajectories defining the qualitative structure of partition of a sphere into trajectories,” Dokl. Akad. Nauk SSSR, 14, No. 5, 251–254 (1937).

    Google Scholar 

  109. E. A. Leontovich and A. G. Maier, “On scheme defining topological structure of partition into trajectories,” Dokl. Akad. Nauk SSSR, 103, No. 4 (1955).

    Google Scholar 

  110. Yu. I. Levi, “On affine connections adjacent to a skew-symmetric tensor,” Dokl. Akad. Nauk SSSR, 128, No. 4, 668–671 (1959).

    MathSciNet  Google Scholar 

  111. A. Lichnerowicz, “Deformation of algebras associated with a symplectic manifold,” in: M. Cahen et al., eds., Differential Geometry and Mathematical Physics (Liège, 1980; Leuven, 1981), Reidel, Dordrecht (1983), pp. 69–83.

    Google Scholar 

  112. J. Lion and M. Vergne, Weyl Representation, Maslov Index, and Theta-Series [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  113. A. M. Lyapunov, “A new case of integrability of equations of motion of a rigid body in a fluid,” in: A Collection of Works [in Russian], Vol. 1, Akad. Nauk SSSR, Moscow (1954), pp. 320–324.

  114. Yu. I. Manin, “Algebraic aspects of nonlinear differential equations,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 11, 5–112 (1978).

    MathSciNet  Google Scholar 

  115. O. V. Manturov, “Homogeneous spaces and invariant tensors,” Itogi Nauki Tekh. Ser. Probl. Geom., 18, 105–142 (1986).

    MathSciNet  Google Scholar 

  116. J. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer, New York (1976).

    Book  MATH  Google Scholar 

  117. J. Marsden and A. Weinstein, “Reduction of symplectic manifolds with symmetry,” Rep. Math. Phys., 5, No. 1, 121–130 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  118. V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], Izd. Mosk. Univ., Moscow (1965).

    Google Scholar 

  119. V. P. Maslov, Asymptotic Methods and Perturbation Theory [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  120. W. Miller, Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  121. R. Miron and V. Oproiu, “Almost cosymplectic and conformal almost cosymplectic connections,” Revue Roum. Math. Pures Appl., 16, No. 6, 893–912 (1971).

    MATH  MathSciNet  Google Scholar 

  122. A. S. Mishchenko, B. Yu. Sternin, and V. E. Shatalov, Lagrangian Manifolds and Canonical Operator Method [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  123. A. S. Mishchenko and A. T. Fomenko, “Euler equations on finite-dimensional Lie groups,” Izv. Akad. Nauk SSSR, Ser. Mat., 42, No. 2, 386–415 (1978).

    Google Scholar 

  124. J. M. Morvan, “Classes de Maslov d’une immersion Lagrangienne et minimalit´e,” C. R. Acad. Sci. Paris, 292, 633–636 (1981).

    MATH  MathSciNet  Google Scholar 

  125. Yu. I. Neimark, “On motions close to double-asymptotic motion,” Dokl. Akad. Nauk SSSR, 172, No. 5, 1021–1024 (1957).

    MathSciNet  Google Scholar 

  126. Yu. I. Neimark, “Structure of motions of a dynamical system near a neighborhood of a homoclinic curve,” in: 5th Summer Mathematical School [in Russian], Kiev (1968), pp. 400–435.

  127. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], Gostekhizdat, Moscow–Leningrad (1949).

    Google Scholar 

  128. Z. Nitetski, Introduction to Differential Dynamics [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  129. E. Novak, “Generalized Maslov–Trofimov index for certain families of Hamiltonians on Lie algebras of upper-triangular matrices,” in: Algebra, Geometry, and Discrete Mathematics in Discrete Problems [in Russian], Moscow (1991), pp. 112–135.

  130. S. P. Novikov, “Hamiltonian formalism and a multivalued analog of Morse theory,” Usp. Mat. Nauk, 37, No. 5, 3–49 (1982).

    Google Scholar 

  131. S. P. Novikov and I. Shmel’tser, “Periodic solutions of Kirchhoff equation of free motion of a rigid body and ideal fluid and extended Lyusternik–Shnirel’man–Morse theory, Funkts. Anal. Prilozh., 15, No. 3, 54–66 (1991).

    MathSciNet  Google Scholar 

  132. J. Palais and S. Smale, “Structural stability theorems,” in: Mathematics (collection of translations) [in Russian], 13, No. 2, 145–155 (1969).

  133. J. Palis and W. De Melu, Geometric Theory of Dynamical Systems. An Introduction [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  134. J. Patera, R. T. Sharp, and P. Winternitz, “Invariants of real low dimension Lie algebras,” J. Math. Phys., 17, No. 6, 986–994 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  135. M. Peixoto, “On structural stability,” Ann. Math. (2), 69, 199–222 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  136. M. Peixoto, “Structural stability on two-dimensional manifolds,” Topology, 1, No. 2, 101–120 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  137. M. Peixoto, “On an approximation theorem of Kupka and Smale,” J. Differ. Equ., 3, 214–227 (1966).

    Article  MathSciNet  Google Scholar 

  138. V. A. Pliss, “On roughness of differential equations given on torus,” Vestn. Leningr. Univ. Mat., 13, 15–23 (1960).

    MathSciNet  Google Scholar 

  139. V. A. Pliss, Integral Sets of Periodic Systems of Differential Equations [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  140. H. Poincaré, On Curves Defined by Differential Equations [Russian translation], OGIZ, Moscow–Leningrad (1947).

    Google Scholar 

  141. H. Poincaré, “New methods in celestial mechanics,” in: Selected Works [Russian translation], Vols. 1. 2, Nauka, Moscow (1971, 1972).

  142. H. Poincaré, On Science [Russian translation], Nauka, Moscow (1983).

    Google Scholar 

  143. A. G. Reiman, “Integrable Hamiltonian systems related to graded Lie algebras,” Zap. Nauchn. Sem. LOMI Akad. Nauk SSSR, 95, 3–54 (1980).

    MathSciNet  Google Scholar 

  144. B. L. Reinhart, “Cobordism and Euler number,” Topology, 2, 173–178 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  145. S. T. Sadetov, “Integrability conditions for Kirchhoff equations,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 56–62 (1990).

  146. S. Salamon, Riemannian Geometry and Holonomy Group Research Notes Math. Ser., Vol. 201, Wiley, New York (1989).

  147. E. J. Saletan, “Contraction of Lie groups,” J. Math. Phys., 2, No. 1, 1–22 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  148. T. V. Sal’nikova, “On integrability of Kirchhoff equations in symmetric case,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 68–71 (1985).

  149. V. A. Samsonov and M. V. Shamolin, “To the problem of body motion in a resisting medium,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 3, 51–54 (1989).

  150. R. Schoen and S. T. Yau, “Complete three dimensional manifolds with positive Ricci curvature and scalar curvature,” Ann. Math. Stud., 209–228 (1982).

  151. H. Seifert and W. Threlfall, Topology [Russian translation], Gostekhizdat, Moscow (1938).

    Google Scholar 

  152. J. P. Serre, “Singular homologies of fiber spaces,” in: Fiber Spaces and Applications [Russian translation], IL, Moscow (1958), pp. 9–114.

  153. M. V. Shamolin, “Closed trajectories of different topological types in problem of body motion in a medium with resistance,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 52–56 (1992).

  154. M. V. Shamolin, “To problem on body motion in a medium with resistance,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 1, 52–58 (1992).

  155. M. V. Shamolin, “Application of Poincaré topographical system and comparison system methods in some concrete systems of differential equations,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 66–70 (1993).

  156. M. V. Shamolin, “Classification of phase portraits in problem of body motion in a resisting medium under existence of a linear damping moment,” Prikl. Mat. Mekh., 57, No. 4, 40–49 (1993).

    MathSciNet  Google Scholar 

  157. M. V. Shamolin, “Existence and uniqueness of trajectories having infinitely distant points as limit sets for dynamical systems on the plane,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 1, 68–71 (1993).

  158. M. V. Shamolin, “A new two-parameter family of phase portraits in problem of body motion in a medium,” Dokl. Ross. Akad. Nauk, 337, No. 5, 611–614 (1994).

    MathSciNet  Google Scholar 

  159. M. V. Shamolin, “On relative roughness of dynamical systems in problem of body motion in a resisting medium,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 17 (1995).

  160. M. V. Shamolin, “Definition of relative roughness and a two-dimensional phase portrait family in rigid body dynamics,” Usp. Mat. Nauk, 51, No. 1, 175–176 (1996).

    MathSciNet  Google Scholar 

  161. M. V. Shamolin, “Introduction to problem of body drag in a resisting medium and a new two-parameter family of phase portraits,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 57–69 (1996).

  162. M. V. Shamolin, “Variety of phase portrait types in dynamics of a rigid body interacting with a resisting medium,” Dokl. Ross. Akad. Nauk, 349, No. 2, 193–197 (1996).

    MathSciNet  Google Scholar 

  163. M. V. Shamolin, “On integrable case in spatial dynamics of a rigid body interacting with a medium,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 65–68 (1997).

  164. M. V. Shamolin, “Spatial Poincaré topographical systems and comparison systems,” Usp. Mat. Nauk, 52, No. 3, 177–178 (1997).

    MathSciNet  Google Scholar 

  165. M. V. Shamolin, “A family of portraits with limit cycles in plane dynamics of a rigid body interacting with a medium,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 29–37 (1998).

  166. M. V. Shamolin, “On integrability in transcendental functions,” Usp. Mat. Nauk, 53, No. 3, 209–210 (1998).

    MathSciNet  Google Scholar 

  167. M. V. Shamolin, “Some classical problems in a three-dimensional dynamics of a rigid body interacting with a medium,” in: Proc. of ICTACEM’98, Kharagpur, India, December 1–5, 1998, CD: Aerospace Engineering Dep., Indian Inst. of Technology, Kharagpur, India (1998).

  168. M. V. Shamolin, “New Jacobi integrable cases in dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 364, No. 5, 627–629 (1999).

    Google Scholar 

  169. M. V. Shamolin, “On roughness of dissipative systems and relative roughness and nonroughness of variable dissipation systems,” Usp. Mat. Nauk, 54, No. 5, 181–182 (1999).

    MathSciNet  Google Scholar 

  170. M. V. Shamolin, “Some classes of particular solutions in dynamics of a rigid body interacting with a medium,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 178–189 (1999).

  171. M. V. Shamolin, “Structural stability in 3D dynamics of a rigid,” in: Proc. of WCSMO-3, Buffalo, NY, May 17–21, 1999, CD: Buffalo, NY (1999).

  172. M. V. Shamolin, “A new family of phase portraits in spatial dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 371, No. 4, 480–483 (2000).

    MathSciNet  Google Scholar 

  173. M. V. Shamolin, “Jacobi integrability in problem of motion of a four-dimensional rigid body in a resisting medium,” Dokl. Ross. Akad. Nauk, 375, No. 3, 343–346 (2000).

    Google Scholar 

  174. M. V. Shamolin, “New families of many-dimensional phase portraits in dynamics of a rigid body interacting with a medium,” in: Abstracts of 16th IMACS World Congress 2000, Lausanne, Switzerland, August 21–25, 2000, CD: EPFL (2000).

  175. M. V. Shamolin, “On limit sets of differential equations near singular points,” Usp. Mat. Nauk, 55, No. 3, 187–188 (2000).

    MathSciNet  Google Scholar 

  176. M. V. Shamolin, “On roughness of dissipative systems and relative roughness of variable dissipation systems,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 63 (2000).

  177. M. V. Shamolin, “Complete integrability of equations of motion of a spatial pendulum in an over-run medium flow,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 5, 22–28 (2001).

  178. M. V. Shamolin, “Integrability cases of equations of spatial rigid body dynamics,” Prikl. Mekh., 37, No. 6, 74–82 (2001).

    MATH  MathSciNet  Google Scholar 

  179. M. V. Shamolin, “On integration of some classes of nonconservative systems, Usp. Mat. Nauk, 57, No. 1, 169–170 (2002).

    MathSciNet  Google Scholar 

  180. M. V. Shamolin, “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium,” J. Math. Sci., 110, No. 2, 2526–2555 (2002).

    Article  MathSciNet  Google Scholar 

  181. M. V. Shamolin, “Foundations of differential and topological diagnostics,” J. Math. Sci., 114, No. 1, 976–1024 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  182. M. V. Shamolin, “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium,” J. Math. Sci., 114, No. 1, 919–975 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  183. M. V. Shamolin, “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body,” J. Math. Sci., 122, No. 1, 2841–2915 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  184. M. V. Shamolin, “Geometric representation of motion in a certain problem of body interaction with a medium,” Prikl. Mekh., 40, No. 2, 137–14 (2004).

    MATH  MathSciNet  Google Scholar 

  185. M. V. Shamolin, “A case of complete integrability in spatial dynamics of a rigid body interacting with a medium taking account of rotational derivatives of force moment in angular velocity,” Dokl. Ross. Akad. Nauk, 403, No. 4. 482–485 (2005).

    MathSciNet  Google Scholar 

  186. M. V. Shamolin, “Comparison of Jacobi integrability cases of plane and spatial body motion in a medium under streamline flow around,” Prikl. Mat. Mekh., 69, No. 6, 1003–1010 (2005).

    MATH  MathSciNet  Google Scholar 

  187. M. V. Shamolin, “On a certain integrability case of equations of dynamics on \( {\text{so}}(4) \times {\mathbb{R}^n} \),” Usp. Mat. Nauk, 60, No. 6, 233–234 (2005).

    MathSciNet  Google Scholar 

  188. M. V. Shamolin, “Structural stable vector fields in rigid body dynamics,” Proc. 8th Conf. on Dynamical Systems (Theory and Applications) (DSTA 2005), Lodz, Poland, December 12–15, 2005, Vol. 1, Tech. Univ. Lodz (2005), pp. 429–436.

  189. M. V. Shamolin, “Cases of complete integrability in elementary functions of some classes of nonconservative dynamical systems,” in: Abstracts of Reports of Int. Conf. “Classical Problems of Rigid Body Dynamics” (June, 9–13, 2007) [in Russian], Donetsk, Inst. of Appl. Math. and Mech., Ukrainian Nat. Acad. Sci. (2007), pp. 81–82.

  190. M. V. Shamolin, “Complete integrability cases in dynamics on tangent bundle of two-dimensional sphere,” Usp. Mat. Nauk, 62, No. 5, 169–170 (2007).

    MathSciNet  Google Scholar 

  191. M. V. Shamolin, “Complete integrability of equations of motion of a spatial pendulum in a medium flow taking account of rotational derivatives of its interaction force moment,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 187–192 (2007).

  192. M. V. Shamolin, Methods for Analyzing Variable Dissipation Dynamical Systems in Rigid Body Dynamics [in Russian], Ekzamen, Moscow (2007).

    Google Scholar 

  193. M. V. Shamolin, “The cases of integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium,” Proc. 9th Conf. on Dynamical Systems (Theory and Applications) (DSTA 2007), Lodz, Poland, December 17–20, 2007, Vol. 1, Tech. Univ. Lodz (2007), pp. 415–422.

  194. M. V. Shamolin, “A three-parameter family of phase portraits in dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 418, No. 1, 146–51 (2008).

    MathSciNet  Google Scholar 

  195. S. Smale, “Rough systems are not dense,” in: Mathematics (collection of translations) [in Russian], 11, No. 4, 107–112 (1967).

  196. S. Smale, “Differentiable dynamical systems,” Usp. Mat. Nauk, 25, No. 1, 113–185 (1970).

    MathSciNet  Google Scholar 

  197. V. A. Steklov, On Rigid Body Motion in a Fluid [in Russian], Khar’kov (1893).

  198. S. Sternberg, Lectures on Differential Geometry [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  199. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  200. S. J. Takiff, “Rings of invariant polynomials for class of Lie algebras,” Trans. Amer. Math. Soc., 160, 249–262 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  201. Ph. Tondeur, “Affine Zuzammenhänge auf Mannigfaltingkeiten mit fast-symplectischer Structur,” Comment. Math. Helv., 36, No. 1, 234–244 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  202. H. H. Torriani, Extensions of Simple Lie Algebras, Integrable Systems of Toda Lattice Type and the Heat Equation, Preprint Univ. de Saõ Paulo RT-MAP-9001 (1990).

  203. V. V. Trofimov, “Euler equations on Borel subalgebras of semisimple Lie algebras,” Izv. Akad. Nauk SSSR, Ser. Mat., 43, No. 3, 714–732 (1979).

    MATH  MathSciNet  Google Scholar 

  204. V. V. Trofimov, “Finite-dimensional representations of Lie algebras and completely integrable systems,” Mat. Sb., 111, No. 4, 610–621 (1980).

    MathSciNet  Google Scholar 

  205. V. V. Trofimov, “Group-theoretic interpretation of equations of magnetic hydrodynamics of ideally conducting fluid,” Nelin. Koleb. Teor. Upravl., No. 3, 118–124 (1981).

  206. V. V. Trofimov, “Completely integrable geodesic flows of left-invariant metrics on Lie groups related to commutative graded algebras with Poincaré duality,” Dokl. Akad. Nauk SSSR, 263, No. 4, 812–816 (1982).

    MathSciNet  Google Scholar 

  207. V. V. Trofimov, “Completely integrable system of hydrodynamic type and algebras with Poincaré duality,” in: School in Operator Theory on Function Spaces [in Russian], Minsk (1982), pp. 192–193.

  208. V. V. Trofimov, “Commutative graded algebras with Poincaré duality and Hamiltonian systems,” in: Topological and Geometric Methods in Mathematical Physics [in Russian], Voronezhsk. Univ., Voronezh (1983), pp. 128–132.

  209. V. V. Trofimov, “Extensions of Lie algebras and Hamiltonian systems,” Izv. Akad. Nauk SSSR, Ser. Mat., 47, No. 6, 1303–1328 (1983).

    MATH  MathSciNet  Google Scholar 

  210. V. V. Trofimov, “Group-theoretic interpretation of some classes of equations of classical mechanics,” in: Differential Equations and Their Applications [in Russian], Izd. Mosk. Univ., Moscow (1984), pp. 106–111.

  211. V. V. Trofimov, “A new method for constructing completely integrable Hamiltonian systems,” in: Qualitative Theory of Differential Equations and Control Theory of Motion [in Russian], Saransk (1985), pp. 35–39.

  212. V. V. Trofimov, “Flat symmetric spaces with noncompact motion groups and Hamiltonian systems,” Tr. Sem. Vekt. Tenz. Anal., No. 22, 163–174 (1985).

  213. V. V. Trofimov, “Geometric invariants of completely integrable Hamiltonian systems,” in: Proc. of All-Union Conf. in Geometry “in the large” [in Russian], Novosibirsk (1987), p. 121.

  214. V. V. Trofimov, “On the geometric properties of the complete commutative set of functions on symplectic manifold,” in: Abstract of Baku International Topological Conference, Baku (1987), p. 297.

  215. V. V. Trofimov, “Generalized Maslov classes of Lagrangian surfaces in symplectic manifolds,” Usp. Mat. Nauk, 43, No. 4, 169–170 (1988).

    Google Scholar 

  216. V. V. Trofimov, “Maslov index of Lagrangian submanifolds of symplectic manifolds,” Tr. Sem. Vekt. Tenz. Anal., No. 23, 190–194 (1988).

  217. V. V. Trofimov, “On Fomenko conjecture for totally geodesic submanifolds in symplectic manifolds with almost Kählerian metric,” in: Selected Problems of Algebra, Geometry and Discrete Mathematics [in Russian], Moscow (1988), pp. 122–123.

  218. V. V. Trofimov, “Geometric invariants of Lagrangian foliations,” Usp. Mat. Nauk, 44, No. 4, 213 (1989).

    Google Scholar 

  219. V. V. Trofimov, Introduction to Geometry of Manifolds with Symmetries [in Russian], Izd. Mosk. Univ., Moscow (1989).

    Google Scholar 

  220. V. V. Trofimov, “On geometric properties of a complete involutive family of functions on a symplectic manifold,” in: Baku Int. Topological Conf. [in Russian], Baku (1989), pp. 173–184.

  221. V. V. Trofimov, “On the connection on symplectic manifolds and the topological invariants of Hamiltonian systems on Lie algebras,” in: Abstracts of Int. Conf. in Algebra, Novosibirsk (1989), p. 102.

  222. V. V. Trofimov, “Symplectic connections, Maslov index, and Fomenko conjecture,” Dokl. Akad. Nauk SSSR, 304, No. 6, 1302–1305 (1989).

    Google Scholar 

  223. V. V. Trofimov, “Connections on manifolds and new characteristic classes,” Acta Appl. Math., 22, 283–312 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  224. V. V. Trofimov, “Generalized Maslov classes and cobordisms,” Tr. Sem. Vekt. Tenz. Anal., No. 24, 186–198 (1991).

  225. V. V. Trofimov, “Holonomy group and generalized Maslov classes of submanifolds in affine connection spaces,” Mat. Zametki, 49, No. 2, 113–123 (1991).

    MathSciNet  Google Scholar 

  226. V. V. Trofimov, “Maslov index in pseudo-Riemannian geometry,” in: Algebra, Geometry and Discrete Mathematics in Nonlinear Problems [in Russian], Moscow (1991), pp. 198–203.

  227. V. V. Trofimov, “Symplectic connections and Maslov–Arnold characteristic classes,” Adv. Sov. Math., 6, 257–265 (1991).

    MathSciNet  Google Scholar 

  228. V. V. Trofimov, “Flat pseudo-Riemannian structure on tangent bundle of a flat manifold,” Usp. Mat. Nauk, 47, No. 3, 177–178 (1992).

    MathSciNet  Google Scholar 

  229. V. V. Trofimov, “Path space and generalized Maslov classes of Lagrangian submanifolds,” Usp. Mat. Nauk, 47, No. 4, 213–214 (1992).

    MATH  MathSciNet  Google Scholar 

  230. V. V. Trofimov, “Pseudo-Euclidean structure of zero index on tangent bundle of a flat manifold,” in: Selected Problems of Algebra, Geometry, and Discrete Mathematics [in Russian], Moscow (1992), pp. 158–162.

  231. V. V. Trofimov, “On absolute parallelism connections on a symplectic manifold,” Usp. Mat. Nauk, 48, No. 1, 191–192 (1993).

    MATH  MathSciNet  Google Scholar 

  232. V. V. Trofimov and A. T. Fomenko, “Dynamical systems on orbits of linear representations and complete integrability of some hydrodynamic systems,” Funkts. Anal. Prilozh., 17, No. 1, 31–39 (1983).

    MathSciNet  Google Scholar 

  233. V. V. Trofimov and A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras,” Usp. Mat. Nauk, 39, No. 2, 3–56 (1984).

    MathSciNet  Google Scholar 

  234. V. V. Trofimov and A. T. Fomenko, “Geometry of Poisson brackets and methods for Liouville integrability of systems on symmetric spaces,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Novejsh. Distizh., 29, 3–108 (1986).

    MathSciNet  Google Scholar 

  235. V. V. Trofimov and A. T. Fomenko, “Geometric and algebraic mechanisms of integrability of Hamiltonian systems on homogeneous spaces,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 16, 227–299 (1987).

    MathSciNet  Google Scholar 

  236. V. V. Trofimov and M. V. Shamolin, “Dissipative systems with nontrivial generalized Arnol’d–Maslov classes,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 62 (2000).

  237. M. B. Vernikov, “To definition of connections concordant with symplectic structure,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 77–79 (1980).

  238. J. Vey, “Deformation du crochet de Poisson sur une varieté symplectique,” Comment. Math. Helv., 50, No. 4, 421–454 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  239. S. V. Vishik and S. F. Dolzhanskii, “Analogs of Euler–Poisson equations and magnetic hydrodynamics equations related to Lie groups,” Dokl. Akad. Nauk SSSR, 238, No. 5, 1032–1035.

  240. M. Y. Wang, “Parallel spinors and parallel forms,” Ann. Global Anal. Geom., 7, No. 1, 59–68 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  241. A. Weinstein, “Local structure of Poisson manifolds,” J. Differential Geom., 18, No. 3, 523–558 (1983).

    MATH  MathSciNet  Google Scholar 

  242. J. Wolf, Spaces of Constant Curvature [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shamolin.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 16, No. 4, pp. 3–229, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, V.V., Shamolin, M.V. Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems. J Math Sci 180, 365–530 (2012). https://doi.org/10.1007/s10958-012-0650-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0650-5

Keywords

Navigation