Skip to main content

Well-defined solvability and spectral analysis of abstract hyperbolic integrodifferential equations

Abstract

The authors study integrodifferential equations in Hilbert space. The coefficients of the equations are unbounded and the principal part is an abstract hyperbolic equation perturbed by terms with Volterra integral operators. Such equations can be regarded as an abstract generalization of the Gurtin–Pipkin integrodifferential equation that describes heat transfer in materials with memory and has a number of other applications. Well-defined solvability of initial boundary value problems for such equations is established in weighted Sobolev spaces on the positive semi-axis. The authors examine spectral problems for operator-valued functions representing the symbols of the said equations and study the spectrum of the abstract Gurtin–Pipkin integrodifferential equation.

References

  1. G. Di Blasio, “Parabolic Volterra equations of convolution type,” J. Integr. Equ. Appl., 6, 479–508 (1994).

    MATH  Article  Google Scholar 

  2. G. Di Blasio, K. Kunisch, and E. Sinestari, “L 2-regularity for parabolic partial integrodifferential equations with delays in the highest order derivatives,” J. Math. Anal. Appl., 102, 38–57 (1984).

    MathSciNet  MATH  Article  Google Scholar 

  3. G. Di Blasio, K. Kunisch, and E. Sinestari, “Stability for abstract linear functional differential equations,” Israel J. Math., 50, No. 3, 231–263 (1985).

    MathSciNet  MATH  Article  Google Scholar 

  4. K. Kunisch and M. Mastinsek, “Dual semigroups and structural operators for partial differential equations with unbounded operators acting on the delays,” Differ. Integr. Equ., 3, No. 4, 733–756 (1990).

    MathSciNet  MATH  Google Scholar 

  5. K. Kunisch and W. Shappacher, “Necessary conditions for partial differential equations with delay to generate l 0-semigroup,” J. Differ. Equ., 50, 49–79 (1983).

    MATH  Article  Google Scholar 

  6. J. Wu, “Semigroup and integral form of class of partial differential equations with infinite delay,” Differ. Integr. Equ., 4, No. 6, 1325–1351 (1991).

    MATH  Google Scholar 

  7. J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., Vol. 119, Springer, New York (1996).

    MATH  Book  Google Scholar 

  8. V. V. Vlasov, “On solvability and properties of solutions of functional-differential equations in Hilbert space,” Mat. Sb., 186, No. 8, 67–92 (1995).

    MathSciNet  Google Scholar 

  9. V. V. Vlasov, “On solvability and estimates of functional-differential equations in Sobolev spaces,” Tr. Mat. Inst. Steklova, 227, 109–121 (1999).

    MathSciNet  Google Scholar 

  10. V. V. Vlasov, “On well-defined solvability of abstract parabolic equations with aftereffect,” Dokl. Ross. Akad. Nauk, 415, No. 2, 151–152 (2007).

    Google Scholar 

  11. R. K. Miller, “An integrodifferential equation for rigid heat conductors with memory,” J. Math. Anal. Appl., 66, 313–332 (1978).

    MathSciNet  MATH  Article  Google Scholar 

  12. R. K. Miller and R. L. Wheeler, “Well-poseness and stability of linear Volterra integrodifferential equations in abstract spaces,” Funkcial. Ekvac., 21, 279–305 (1978).

    MathSciNet  MATH  Google Scholar 

  13. V. V. Vlasov and K. I. Shmatov, “Correct solvability of hyperbolic-type equations with delay in a Hilbert space,” Tr. Mat. Inst. Steklova, 243, 127–137 (2003).

    MathSciNet  Google Scholar 

  14. D. A. Medvedev, V. V. Vlasov, and J. Wu, “Solvability and structural properties of abstract neutral functional differential equations,” J. Funct. Differ. Equ., 15, No. 3–4, 249–272 (2008).

    MathSciNet  MATH  Google Scholar 

  15. V. V. Vlasov and J. Wu, “Solvability and spectral analysis of abstract hyperbolic equations with delay,” J. Funct. Differ. Equ., 16, No. 4, 751–768 (2009).

    MathSciNet  MATH  Google Scholar 

  16. V. V. Vlasov and D. A. Medvedev, “Functional-differential equations in Sobolev spaces and related topics of the spectral theory,” Sovrem. Mat. Fund. Napr., 30, 3–173 (2008).

    Google Scholar 

  17. V. V. Vlasov and J. Wu, “Spectral analysis and solvability of abstract hyperbolic equations with aftereffect,” Differ. Uravn., 45, No. 4, 524–533 (2009).

    MathSciNet  Google Scholar 

  18. R. K. Miller, “Volterra integral equation in Banach space,” Funkcial. Ekvac., 18, 163–194 (1975).

    MathSciNet  MATH  Google Scholar 

  19. V. V. Vlasov, J.Wu, and G. R. Kabirova, “Well-defined solvability and spectral properties of abstract hyperbolic equations with aftereffect,” Sovrem. Mat. Fund. Napr., 35, 44–59 (2010).

    MathSciNet  Google Scholar 

  20. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Problems and Their Applications [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  21. M. E. Gurtin and A. C. Pipkin, “Theory of heat conduction with finite wave speed,” Arch. Ration. Mech. Anal., 31, 113–126 (1968).

    MathSciNet  MATH  Article  Google Scholar 

  22. L. Pandolfi, “The controllability of the Gurtin–Pipkin equations: A cosine operator approach,” Appl. Math. Optim., 52, 143–165 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  23. W. Desch and R. K. Miller, “Exponential stabilization of Volterra integrodifferential equations in Hilbert space,” J. Differ. Equ., 70, 366–389 (1987).

    MathSciNet  MATH  Article  Google Scholar 

  24. A. I. Miloslavskii, Spectral Properties of an Operator Pencil Arising in Viscoelasticity, Registered in Ukr. NIINTI 13.07.87. No. 1229-UK87, Kharkov (1987).

  25. N. D. Konachevskii and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics, Vol. 2, Nonself Adjoint Problems for Viscous Fluids, Springer, Berlin (2003).

    Google Scholar 

  26. D. A. Kosmodemjanskii and A. S. Shamaev, “On some spectral problems in fluid-saturated porous media,” Sovrem. Mat. Fund. Napr., 17, 88–109 (2006).

    Google Scholar 

  27. S. Ivanov and L. Pandolfi, “Heat equations with memory: Lack of controllability to the rest,” J. Math. Anal. Appl., 355, 1–11 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  28. S. A. Ivanov and T. L. Sheronova, Spectrum of the Heat Equation with Memory, http://arxiv.org/abs/0912.1818v1.

  29. S. A. Ivanov, “Wave Type” Spectrum of the Gurtin–Pipkin Equation of the Second Order, http://arxiv.org/abs/1002.2831.

  30. K. Yosida, Functional Analysis [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  31. V. P. Mikhailov, Partial Differential Equations [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  32. S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Vysshaya Shkola, Moscow (1977).

    Google Scholar 

  33. V. V. Vlasov, A. A. Gavrikov, S. A. Ivanov, D. Yu. Knyaz’kov, V. A. Samarin, and A. S. Shamaev, “Spectral properties of combined media,” Sovr. Probl. Mat. Mekh., 5, No. 1, 134–155 (2009).

    Google Scholar 

  34. S. A. Avdonin and S. A. Ivanov, Families of Exponentials. Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

  35. V. V. Vlasov, Some Spaces of Vector-Valued Functions Holomorphic in an Angle [in Russian], Moscow (1981).

  36. V. V. Zhikov, “On an extension and application of the method of two-scale convergence,” Mat. Sb., 191, No. 7, 31–72 (2000).

    MathSciNet  Google Scholar 

  37. A. S. Markus, Introduction to the Theory of Polynomial Operator Pencils [in Russian], Shtiintsa, Kishinev (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vlasov.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 28, Part I, pp. 75–113, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vlasov, V.V., Rautian, N.A. Well-defined solvability and spectral analysis of abstract hyperbolic integrodifferential equations. J Math Sci 179, 390–414 (2011). https://doi.org/10.1007/s10958-011-0600-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0600-7

Keywords

  • Hardy Space
  • Spectral Problem
  • Weighted Sobolev Space
  • Operator Pencil
  • Wiener Theorem