Skip to main content
Log in

Boundary Harnack principle for second order elliptic equations with unbounded drift

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove the boundary Harnack principle for ratios of solutions u/v of non-divergence second order elliptic equations Lu = a ij D ij u + b i D i u = 0 in a bounded domain Ω ⊂ \( {\mathbb R} \) n. We assume that b i L n(Ω) and Ω is a twisted Hölder domain of order α ∈ (1/2, 1]. Based on this result, we derive the Hölder regularity of u/v for uniform domains. Bibliography: 27 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. C. Evans, “Classical solutions of fuly nonlinear, convex, second-order elliptic equations,” Comm. Pure Appl. Math. 35, 333–363 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations,” [in Russian] Izv. Akad. Nauk SSSR, Ser. Mat. 46, 487–523 (1982); English transl.: Math. USSR Izvestija 20, 459–492 (1983).

    Article  Google Scholar 

  3. N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain,” [in Russian] Izv. Akad. Nauk SSSR, Ser. Mat. 47, 75–108 (1983); English transl.: Math. USSR Izvestija 22, 67–97 (1984).

    Article  Google Scholar 

  4. L. Nirenberg, “On nonlinear partial differential equations and Hölder continuity,” Comm. Pure Appl. Math. 6, 103–156 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. V. Krylov and M. V. Safonov, “A certain property of solutions of parabolic equations with measurable coefficients,” [in Russian] Izv.Akad. Nauk SSSR, Ser. Mat. 44 161–175 (1980); English transl.: Math. USSR Izvestija 16, 151–164 (1981).

    Article  MATH  Google Scholar 

  6. M. V. Safonov, “Harnack inequality for elliptic equations and the Hölder property of their solutions,” [in Russian] Zap. Nauchn. Semin. LOMI 96, 272–287 (1980); English transl.: J. Math. Sci., New York 21, No. 5, 851–863 (1983).

    Article  MATH  Google Scholar 

  7. N. Nadirashvili and S. Vlăduţ, “Nonclassical solutions of fully nonlinear elliptic equations,” Geom. Funct. Anal. 17, 1283–1296 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order [in Russian], Nauka, Moscow (1985); English transl.: D. Reidel, Dordrecht, Holland (1987).

  9. H. Kim and M. V. Safonov, “Carleson type estimates for second order elliptic equations with unbounded drift,” J. Math. Sci., New York 176, No. 6, 928–944 (2011).

    Article  Google Scholar 

  10. L. Carleson, “On the existence of boundary values for harmonic functions in several variables,” Ark. Mat. 4, 339–343 (1961).

    MathSciNet  Google Scholar 

  11. A. Ancona, “Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien,” Ann. Inst. Fourier (Grenoble) 28, 169–213 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Dahlberg, “Estimates for harmonic measure,” Arch. Rat. Mech. Anal. 65, 275–288 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-M. G. Wu, “Comparison of kernel functions, boundary Harnack principle, and relative Fatou theorem on Lipschitz domains,” Ann. Inst. Fourier (Grenoble) 28, 147–167 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. A. Caffarelli, E. B. Fabes, S. Mortola, and S. Salsa, “Boundary behavior of nonnegative solutions of elliptic operators in divergence form,” Indiana J. Math. 30, 621–640 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. E. Bauman, “Positive solutions of elliptic equations in non-divergence form and their adjoints,” Ark. Mat. 22, No. 2, 153–173 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  16. C. E. Kenig, “Potential theory of non-divergence form elliptic equations. Dirichlet forms (Varenna, 1992),” Lecture Notes in Math., Springer, Berlin 1563, 89–128 (1993).

    Article  MathSciNet  Google Scholar 

  17. D. S. Jerison and C. E. Kenig, “Boundary behavior of harmonic functions in non-tangentially accessible domains,” Adv. Math. 46, 80–147 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. F. Bass and K. Burdzy, “A boundary Harnack principle in twisted Hölder domain,” Ann. Math. 134, 253–276 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Aikawa, “Boundary Harnack principle and Martin boundary for a uniform domain,” J. Math. Soc. Japan 53. No. 1, 119–145 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. F. Bass and K. Burdzy, “Lifetimes of conditioned diffusions,” Probab. Th. Rel. Fields 91, 405–443 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Bañuelos, R. F. Bass, and K. Burdzy, “Hölder domains and the boundary Harnack principle,” Duke Math. J. 64(1), 195–200 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Ferrari, “On boundary behavior of harmonic functions in Hölder domains,” J. Fourier Anal. Appl. 4, 447–461 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. F. Bass and K. Burdzy, “The boundary Harnack principle for non-divergence form elliptic operators,” J. London Math. Soc. 50, 157–169 (1994).

    MathSciNet  MATH  Google Scholar 

  24. A. D. Aleksandrov, “Uniqueness conditions and estimates for the solution of the Dirichlet problem,” [in Russian], Vestn. Leningr. Univ. 18, No. 3, 5–29 (1963); English transl.: AMS Transl. (2) 68, 89–119 (1968).

    MATH  Google Scholar 

  25. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, New York (1983).

    MATH  Google Scholar 

  26. M. V. Safonov, “Non-divergence elliptic equations of second order with unbounded drift,” In: Nonlinear Partial Differential Equations and Related Topics, AMS Transl. (2) 229, 211–232 (2010).

  27. E. M. Landis, Second Order Equations of Elliptic and Parabolic Type [in Russian], Nauka, Moscow (1971); English transl.: Transl Math. Monographs 171, AMS, Providence, RI (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Safonov.

Additional information

Dedicated to Nicolai Krylov

Translated from Problems in Mathematical Analysis 61, October 2011, pp. 109–122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Safonov, M. Boundary Harnack principle for second order elliptic equations with unbounded drift. J Math Sci 179, 127–143 (2011). https://doi.org/10.1007/s10958-011-0585-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0585-2

Keywords

Navigation