Skip to main content
Log in

Thermomechanical behavior of semitransparent bodies with cavities under thermal radiation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A mathematical model for the description of coupled processes of radiative heat exchange, heat conduction, and deformation in semitransparent bodies under thermal radiation is generalized for the case of these bodies with closed structural cavities. The model is based on the phenomenological theory of radiation and theory of quasistatic thermoelasticity in the description of radiation properties of materials by spectral characteristics and taking into account properties of the medium on cavities. As an example, we investigate the thermostressed state of a hollow sphere filled by gas under homogeneous radiation from a heated external spherical surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. F. Amenzade, Theory of Elasticity [in Russian], Vysshaya Shkola, Moscow (1976).

    Google Scholar 

  2. A. V. Arendarchuk and A. P. Slobodskoi, Electrothermal Equipment for Directed Radiation [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  3. N. M. Belyaev and A. A. Ryadno, Methods of the Theory of Heat Conduction [in Russian], Vol. 1, Vysshaya Shkola, Moscow (1982).

    Google Scholar 

  4. A. G. Blokh, Yu. A. Zhuravlev, and L. N. Ryzhkov, Radiation Heat Transfer. A Handbook [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  5. S. F. Budz, Ya. I. Burak, and E. M. Irza, “Optimization of heating conditions of a spherical shell with a time-varying heat transfer coefficient,” Mat. Met. Fiz.-Mekh. Polya, Issue 8, 67–71 (1978).

    Google Scholar 

  6. Ya. I. Burak, O. R. Hachkevych, and R. F. Terlets’kyi, “Thermomechanics of bodies of low conductivity under the action of electromagnetic radiation of infrared frequency range,” Dop. Akad. Nauk Ukr. RSR., Ser. A., No. 6, 39–43 (1990).

  7. E. A. Volkov, Numerical Methods [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  8. E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Engineering [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  9. A. R. Gachkevich, Thermomechanics of Electroconductive Bodies under the Action of Quasistationary Electromagnetic Fields [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  10. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York (1972).

    Google Scholar 

  11. H. S. Kit, “Problems of stationary heat conduction and thermoelasticity for a body with heat release on a circular domain (crack),” Mat. Met. Fiz.-Mekh. Polya, 51, No. 4, 120–128 (2008), English translation: J. Math. Sci., 167, No. 2, 141–153 (2010).

    Article  Google Scholar 

  12. H. S. Kit and O. P. Sushko, “Thermoelastic state of a half-space containing a thermally active elliptic crack perpendicular to its boundary,” Fiz.-Khim. Mekh. Mater., 42, No. 2, 45–52 (2006), English translation: Mater. Sci., 42, No. 2, 189–199 (2006).

    Article  Google Scholar 

  13. H. S. Kit and M. S. Chernyak, “Stressed state of an infinite and a semiinfinite body with thermal spherical inclusions in uniform heating,” Prykl. Probl. Mekh. Mat., Issue 7, 105–110 (2009).

    Google Scholar 

  14. A. D. Kovalenko, Thermoelasticity [in Russian], Vyshcha Shkola, Kiev (1975).

    Google Scholar 

  15. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York–San Francisco–Toronto–London–Sydney (1968).

    Google Scholar 

  16. F. Kreit and W. Z. Black, Basic Heat Transfer, Harper and Row, New York (1980).

    Google Scholar 

  17. H. Kuchling, Taschenbuch der Physik, Frankfurt am Main (1979).

  18. N. A. Rubtsov, Radiation Heat Transfer in Continuous Media [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  19. A. A. Samarskii an A. V. Guilin, Numerical Methods [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  20. M. M. Shul’ts, “Glass: structure, properties, and application,” Sorosovs. Obrazov. Zh., No. 3, 49–55 (1996).

  21. W Espe, Materials of High Vacuum Technology, Vol. 2: Silicates, Pergamon Press, Oxford (1968).

    Google Scholar 

  22. L. Burka and P. M. Likhanskii, “Transient radiative-conductive heating of plexiglas,” J. Appl. Mech. Techn. Phys., 42, No. 3, 469–474 (2001).

    Article  Google Scholar 

  23. M. F. Modest, Radiative Heat Transfer, Academic Press, San Diego (2003).

    Google Scholar 

  24. N. Siedow, T. Grosan, D. Lochegnies, and E. Romero, “Application of a new method for radiative heat transfer to flat glass tempering,” J. Am. Ceram. Soc., 88, No. 8, 2181–2187 (2005).

    Article  Google Scholar 

  25. R. Siegel, “Transient heat transfer in a semitransparent radiating layer with boundary convection and surface reflections,” Int. J. Heat Mass Transfer, 39, No. 1, 69–79 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 53, No. 2, pp. 108–121, April–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hachkevych, O.R., Humenchuk, O.B. & Gajek, M. Thermomechanical behavior of semitransparent bodies with cavities under thermal radiation. J Math Sci 178, 496–511 (2011). https://doi.org/10.1007/s10958-011-0565-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0565-6

Keywords

Navigation