Skip to main content
Log in

Geometric versions of Schwarz’s lemma and symmetrization

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The connection between the geometric versions of Schwarz’s lemma and the known symmetrization principles for some classes of analytic functions in a disk and a circular ring are discussed. In particular, simple proofs based on classical approaches are presented for some recent results of other authors. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Dubinin, “Capacities of condensers, generalizations of Grötzsch lemmas, and symmetrization,” Zap. Nauchn. Semin. POMI, 337, 73–100 (2006).

    MATH  Google Scholar 

  2. G. M. Goluzin, The Geometric Theory of Functions of a Complex Variable [in Russian], Moscow (1966).

  3. H. P. Boas, “Julius and Julia: mastering the art of the Schwarz lemma,” Amer. Math. Monthly, 117, No. 9, 770–785 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini, and T. J. Ransford, “Area, capacity, and diameter versions of Schwarz’s lemma,” Conform Geom. Dyn., 12, 133–152 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Pólya and G. Szegő, Isoperimeter Inequalities in Mathematical Physics [Russian translation], Moscow (1962).

  6. V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable,” Usp. Mat. Nauk, 49, No. 1, 3–76 (1994).

    MathSciNet  Google Scholar 

  7. T. Kubo, “Hyperbolic transfinite diameter and some theorems on analytic functions in an annulus,” J. Math. Soc. Japan, 10, No. 4, 348–364 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. P. Mityuk, Symmetrization Methods and Their Application in Geometric Functions Theory. Introduction to Symmetrization Methods [in Russian], Kuban’s State University, Krasnodar (1980).

    Google Scholar 

  9. H. Kloke, “Some inequalities for the capacity of plane condensers,” Results Math., 9, Nos. 1–2, 82–94 (1986).

    MathSciNet  MATH  Google Scholar 

  10. D. Betsakos, “Geometric versions of Schwarz’s lemma for quasiregular mappings,” Proc. Amer. Math. Soc., 139, 1397–1407 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. G. Reshetnyak, Space Maps with Bounded Distortion [in Russian], Novosibirsk (1982).

  12. I. P. Mityuk, “Symmetrization principle for multiconnected domains,” Dokl. AN SSSR, 157, No. 2, 268–270 (1964).

    Google Scholar 

  13. I. P. Mityuk, “Symmetrization principle for multiconnected domains and some of its applications,” Ukr, Mat. Zh., 17, No. 4, 46–54 (1965).

    Article  MATH  Google Scholar 

  14. T. H. MacGregor, “Length and area estimates for analytic functions,” Michigan Math. J., 11, No. 4, 317–320 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Marcus, “Transformation of domains in the plane and applications in the theory of functions,” Pacific J. Math., 14, No. 2, 613–626 (1964).

    MathSciNet  MATH  Google Scholar 

  16. G. M. Goluzin, “Some covering theorems for functions regular in the disk.” Mat. Sb., 2(44), No. 3, 617–619 (1937).

    Google Scholar 

  17. A. F. Bermant, “On certain generalizations of E. Lindelöf’s principle and their applications,” Mat. Sb., 20(62), No. 1, 55–112 (1947).

    MathSciNet  Google Scholar 

  18. A. Yu. Solynin, “A Schwarz lemma for meromorphic functions and estimates for the hyperbolic metric,” Proc. Amer. Math. Soc., 136, No. 9, 3133–3143 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Yu. Solynin, “Modules and extremal metric problems,” Algebra Analiz, 11, No. 1, 3–86 (1999).

    MathSciNet  Google Scholar 

  20. J. A. Jenkins, Univalent Functions and Conformal Mapping [Russian translation], Moscow (1962).

  21. V. N. Dubinin, “Distortion theorem in the theory of conformal mappings,” Mat. Zametki, 44, No. 3, 341–351 (1988).

    MathSciNet  MATH  Google Scholar 

  22. G. K. Antonyuk, “On area covering for functions regular in a ring,” Vestn. LGU, Ser. Mat., Mekh., Astron., 1, No. 1, 45–65 (1958).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Dubinin.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 383, 2010, pp. 63–76.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinin, V.N. Geometric versions of Schwarz’s lemma and symmetrization. J Math Sci 178, 150–157 (2011). https://doi.org/10.1007/s10958-011-0542-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0542-0

Keywords

Navigation