Skip to main content
Log in

Heat flows for a nonconvex Signorini type problem in \( {\mathbb{R}^{N}} \)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove the existence of a global heat flow u : Ω × \( {\mathbb{R}^{+}} \to {\mathbb{R}^{N}}\), N > 1, satisfying a Signorini type boundary condition u(∂Ω × \( {\mathbb{R}^{+}}\)) ⊂ 

, where Ω is a bounded domain in \( {\mathbb{R}^{n}}\)), \( n \geqslant 2 \), and

is a nonconvex (not necessarily compact) set in \( {\mathbb{R}^{N}}\)) with boundary

of class C 2. The function u(·, t) maps any smooth function φ on \( \bar{\Omega } \) such that φ(∂Ω) ⊂

to u 0 as t → ∞, where u 0 is an extremal of the variational problem for the energy functions with the boundary obstacle

and u 0(∂Ω) ⊂

. We show that u(x, t) is a weak solution to the nonstationary Signorini problem and obtain an estimate for the admissible singular set of u. A similar result is valid if an obstacle in \( {\mathbb{R}^{N}}\) is given by a smooth noncompact hypersurface S. Bibliography: 30 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arkhipova, “Signorini problem in \( {\mathbb{R}^{N}}\) for a class of quadratic functionals,” Am. Math. Soc. Transl. (2) 229, 15–38 (2010).

    MathSciNet  Google Scholar 

  2. A. Arkhipova, “Obstacle up to the boundary problem for a class of quadratic functionals in \( {\mathbb{R}^{N}}\)” [in Russian], Algebra Anal. 22, No. 6, 3–42 (2010).

    Google Scholar 

  3. F. Duzaar, “Variational inequalities and harmonic mappings,” J. Reine Angew. Math. 374, 39–60 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Duzaar and M. Fuchs, “Optimal regularity theorem for variational problems with obstacles,” Manuscr. Math. 56, 209–234 (1986).

    Article  MathSciNet  Google Scholar 

  5. M. Fuchs, “A regularity theorem for energy minimizing maps of Riemannian manifold,” Commun. Partial Differ. Equations 12, 1309–1321 (1987).

    Article  MATH  Google Scholar 

  6. M. Fuchs, “Some remarks on the boundary regularity for minima of variational problems with obstacles,” Manuscr. Math. 54, 107–119 (1986).

    Article  MATH  Google Scholar 

  7. M. Fuchs and N. Fusko, “Partial regularity results for vector-valued functions which minimize certain functionals having non quadratic growth under smooth side conditions,” J. Reine Angew. Math. 390, 67–78 (1988).

    MathSciNet  MATH  Google Scholar 

  8. M. Fuchs and M. Wiegner, “The regularity of minima of variational problems with graph obstacles,” Arch. Math. 53, No. 1, 75–81 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Hildebrandt, Harmonic Mappings of Riemannian Manifolds, Lect. Notes Math. 1161 (1985).

  10. S. Hildebrandt, H. Kaul, and K.-O. Widman, “An existence theorem for harmonic mappings of Riemannian manifolds,” Acta Math. 138, 1–16 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Hildebrandt and K.-O. Widman, Variational inequalities for vector-valued functions J. Reine Angew. Math. 309, 191–220 (1979).

    MathSciNet  MATH  Google Scholar 

  12. M. Wiegner, “On minima of variational problems with some nonconvex constraints,” Manuscr. Math. 57, 149–168 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Beirao da Veiga and F. Conti, “Equazioni ellittiche non lineari con ostacoli sottili. Applicazioni allo studio dei punti regolari,” Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26, 533–562 (1972).

    MATH  Google Scholar 

  14. J. Frehse, “On Signorini’s problem and variational problems with thin obstacle,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser. 4, 343–362 (1977).

    MathSciNet  MATH  Google Scholar 

  15. D. Kinderlehrer, “The smoothness of the solution of the boundary obstacle problem,” J. Math. Pures Appl. IX. Sér. 60, 193–212 (1981).

    MathSciNet  MATH  Google Scholar 

  16. N. N. Uraltseva, “A unilateral boundary value problem for a quasilinear elliptic equation” [in Russian], Probl. Mat. Anal. 6, 172–189 (1977).

    Google Scholar 

  17. N. N. Uraltseva, “On the regularity of solutions of variational inequalities” [in Russian], Usp. Mat. Nauk 42, No. 6, 151–174 (1987); English transl.: Russ. Math. Surv. 42, No. 6, 191–219 (1987).

    Article  MathSciNet  Google Scholar 

  18. L. Caffarelli, “Further regularity for the Signorini problem,” Commun. Partial Differ. Equations 4, 1067–1075 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Athanasopoulos and L. A. Caffarelli, “Optimal regularity of lower dimensional obstacle problems,” Zap. Nauchn. Semin. LOMI [in Russian] 310, 49–66 (2004); English transl.: J. Math. Sci., New York 132, No. 3, 274–284 (2006).

    Article  MathSciNet  Google Scholar 

  20. G. Fichera, Existence Theorems in Elasticity Theory [in Russian], Mir, Moscow (1974).

    Google Scholar 

  21. J. Nečas, “On regularity of solutions to nonlinear variational inequalities for second order elliptic systems,” Rend. Mat., VI. Ser. 8, 481–498 (1975).

    MATH  Google Scholar 

  22. N. N. Uraltseva, “Strong solutions of the generalized Signorini problem” [in Russian], Sib. Mat. Zh. 19 1204–1212 (1978); English transl.: Sib. Math. J. 19, 850–856 (1979).

    Article  Google Scholar 

  23. R. Schumann, “On the regularity of a contact boundary value problem” [in German], Z. Anal. Anwend. 9, No. 5, 455–465 (1990).

    MathSciNet  MATH  Google Scholar 

  24. A. A. Arkhipova and N. N. Uraltseva, “Regularity of the solutions of diagonal elliptic systems under convex constraints on the boundary of the domain” [in Russian], Zap. Nauchn. Semin. LOMI 152, 5–17 (1986); English transl.: J. Math. Sci., New York 40, No. 5, 591–599 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. A. Arkhipova and N. N. Uraltseva, “Regularity of solutions of variational inequalities with convex boundary constraints for nonlinear operators with diagonal main part” [in Russian], Vestnik Leningr. Univ. 15, 13–19 (1987).

    MathSciNet  Google Scholar 

  26. A. A. Arkhipova and N. N. Uraltseva, “Limit smoothness of the solutions of variational inequalities under convex constraints on the boundary of the domain” [in Russian], Zap. Nauchn. Semin. LOMI 163, 5–16 (1987); English transl.: J. Math. Sci., New York 49, No. 5, 1121–1128 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Chen and M. Struwe, “Existence and partial regularity results for the heat flow of harmonic maps,” Math. Z. 201, No. 1, 83–103 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  28. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence, RI (1968).

    Google Scholar 

  29. N. N. Uraltseva, “An estimate of the derivatives of the solutions of variational inequalities on the boundary of the domain” [in Russian], Probl. Mat. Anal. 10, 92–105 (1986); English transl.: J. Math. Sci., New York 45, No. 3, 1181–1191 (1989).

    Article  MathSciNet  Google Scholar 

  30. M. Struwe, “On the evolution of harmonic maps in higher dimentions,” J. Differ. Geom. 28, 485–502 (1988).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arkhipova.

Additional information

Dedicated to Vasilii Zhikov

Translated from Problems in Mathematical Analysis 58, June 2011, pp. 25–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipova, A. Heat flows for a nonconvex Signorini type problem in \( {\mathbb{R}^{N}} \) . J Math Sci 176, 732–758 (2011). https://doi.org/10.1007/s10958-011-0433-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0433-4

Keywords

Navigation