We construct the beta function of the Hermitian symmetric space O(n, 2)/O(n) × O(2), or, equivalently, of the tube (Re z 0)2 > (Re z 1)2 + ⋯ + (Re z n )2 in \( {\mathbb{C}^{n + 1}} \). Bibliography: 11 titles.
Article PDF
Similar content being viewed by others
References
F. A. Berezin, “The connection between covariant and contravariant symbols of operators on classical complex symmetric spaces,” Sov. Math. Dokl., 19, 786–789 (1978).
E. Cartan, “Sur les domaines bornés homogènes de l’espace des n variables complexes,” Abhandl. Hamburg, 11, 116–162 (1935).
Th. E. Cecil, Lie Sphere Geometry. With Applications to Submanifolds, Springer-Verlag, New York (1992).
S. G. Gindikin, “Analysis in homogeneous domains,” Russian Math. Surveys, 19, 1–89 (1964).
L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking (1958); English translation: Amer. Math. Soc., Providence, Rhode Island (1963).
J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford (1994).
Yu. A. Neretin, “Matrix analogues of the beta function and Plancherel’s formula for Berezin kernel representations,” Sb. Math., 191, No. 5, 683–715 (2000).
Yu. A. Neretin, “Plancherel formula for Berezin deformation of L 2 on Riemannian symmetric space,” J. Funct. Anal., 189, No. 2, 336–408 (2002).
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Elementary Functions, Gordon & Breach Science Publishers, New York (1986).
I. I. Pjateckiĭ-Šapiro, Geometry of Classical Domains and Theory of Automorphic Functions [in Russian], Gosudarstv, Izdat. Fiz.-Mat. Lit., Moscow (1961).
A. Unterberger and H. Upmeier, “The Berezin transform and invariant differential operators,” Comm. Math. Phys., 164, 563–597 (1994).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Zapiski Nauchnykh Seminarov POMI, Vol. 378, 2010, pp. 73–80.
Rights and permissions
About this article
Cite this article
Neretin, Y.A. On the beta function of the tube of the light cone. J Math Sci 174, 36–40 (2011). https://doi.org/10.1007/s10958-011-0279-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-011-0279-9