Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Mathematical Sciences
  3. Article

On the beta function of the tube of the light cone

  • Published: 05 March 2011
  • volume 174, pages 36–40 (2011)
Download PDF
Journal of Mathematical Sciences Aims and scope Submit manuscript
On the beta function of the tube of the light cone
Download PDF
  • Yu. A. Neretin1,2,3 
  • 43 Accesses

  • Explore all metrics

Cite this article

We construct the beta function of the Hermitian symmetric space O(n, 2)/O(n) × O(2), or, equivalently, of the tube (Re z 0)2 > (Re z 1)2 + ⋯ + (Re z n )2 in \( {\mathbb{C}^{n + 1}} \). Bibliography: 11 titles.

Article PDF

Download to read the full article text

Similar content being viewed by others

An alternative method for extracting the von Neumann entropy from Rényi entropies

Article Open access 11 January 2021

Eric D’Hoker, Xi Dong & Chih-Hung Wu

The Hermite function expansions of the Heaviside function

Article 07 February 2015

Toshinao Kagawa

Rényi mutual information inequalities from Rindler positivity

Article Open access 10 December 2019

David Blanco, Leandro Lanosa, … Guillem Pérez-Nadal

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F. A. Berezin, “The connection between covariant and contravariant symbols of operators on classical complex symmetric spaces,” Sov. Math. Dokl., 19, 786–789 (1978).

    MATH  Google Scholar 

  2. E. Cartan, “Sur les domaines bornés homogènes de l’espace des n variables complexes,” Abhandl. Hamburg, 11, 116–162 (1935).

    Article  MATH  Google Scholar 

  3. Th. E. Cecil, Lie Sphere Geometry. With Applications to Submanifolds, Springer-Verlag, New York (1992).

    MATH  Google Scholar 

  4. S. G. Gindikin, “Analysis in homogeneous domains,” Russian Math. Surveys, 19, 1–89 (1964).

    Article  MathSciNet  Google Scholar 

  5. L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking (1958); English translation: Amer. Math. Soc., Providence, Rhode Island (1963).

    Google Scholar 

  6. J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford (1994).

    MATH  Google Scholar 

  7. Yu. A. Neretin, “Matrix analogues of the beta function and Plancherel’s formula for Berezin kernel representations,” Sb. Math., 191, No. 5, 683–715 (2000).

    Article  MathSciNet  Google Scholar 

  8. Yu. A. Neretin, “Plancherel formula for Berezin deformation of L 2 on Riemannian symmetric space,” J. Funct. Anal., 189, No. 2, 336–408 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1, Elementary Functions, Gordon & Breach Science Publishers, New York (1986).

    MATH  Google Scholar 

  10. I. I. Pjateckiĭ-Šapiro, Geometry of Classical Domains and Theory of Automorphic Functions [in Russian], Gosudarstv, Izdat. Fiz.-Mat. Lit., Moscow (1961).

    Google Scholar 

  11. A. Unterberger and H. Upmeier, “The Berezin transform and invariant differential operators,” Comm. Math. Phys., 164, 563–597 (1994).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical and Experimental Physics, Moscow, Russia

    Yu. A. Neretin

  2. University of Vienna, Vienna, Austria

    Yu. A. Neretin

  3. Moscow State University, Moscow, Russia

    Yu. A. Neretin

Authors
  1. Yu. A. Neretin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yu. A. Neretin.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 378, 2010, pp. 73–80.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neretin, Y.A. On the beta function of the tube of the light cone. J Math Sci 174, 36–40 (2011). https://doi.org/10.1007/s10958-011-0279-9

Download citation

  • Received: 23 August 2010

  • Published: 05 March 2011

  • Issue Date: April 2011

  • DOI: https://doi.org/10.1007/s10958-011-0279-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Symmetric Space
  • Light Cone
  • Beta Function
  • Sphere Geometry
  • Hermitian Symmetric Space
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

18.206.13.203

Not affiliated

Springer Nature

© 2023 Springer Nature