Skip to main content
Log in

Trapped modes in a linear problem of the theory of surface water waves

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider the linear problem of the steady oscillations of an ideal unbounded fluid with a free surface in the presence of a system of submerged horizontal cylindrical bodies of arbitrary cross section. We propose a criterion of the unique solvability of the problem and, based on this criterion, develop an algorithm for finding trapped unforced modes of fluid oscillations (solutions to the homogeneous boundary value problem) for bodies of a given arbitrary shape. The algorithm is applicable to the oscillations frequencies located on the continuous spectrum, as well as outside it. We also discuss the numerical realization and reliability of the obtained numerical results. As an illustration, we give examples of numerical experiments which are compared with known results. Bibliography: 28 titles. Illustrations: 5 figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Kuznetsov, V. G. Maz’ya, and B. R. Vainberg, Linear Water Waves: a Mathematical Approach, Cambridge Univ. Press, Cambridge (2002).

    Book  MATH  Google Scholar 

  2. O. V. Motygin, “On unique solvability in the problem of water waves above submerged bodies” [in Russian], Zap. Nauchn. Semin. POMI 369, 143–163 (2009); English transl.: J. Math. Sci., New York 167, No. 5, 680–691 (2010).

  3. O. V. Motygin and P. McIver, “On uniqueness in the problem of gravity-capillary water waves above submerged bodies” Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465, No. 2106, 1743–1761 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Ursell, “On head seas travelling along a horizontal cylinder,” J. Inst. Math. Appl. 4, 414–427 (1968).

    Article  MATH  Google Scholar 

  5. V. G. Maz’ya, “Boundary integral equations,” In: Encyclopaedia of Math. Sciences, Analysis IV 27, pp. 127–222, Springer, Berlin (1991).

  6. F. Ursell, “The expansion of water-wave potentials at great distances,” Proc. Camb. Philos. Soc. 64, No. 3, 811–826 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  7. O. V. Motygin, “On trapping of surface water waves by cylindrical bodies in a channel,” Wave Motion 45, 940–951 (2008).

    Article  MathSciNet  Google Scholar 

  8. D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, and Yu. A. Mochalova, Localization of Linear Waves, St. Petersb. Univ. State, St. Petersb. (2007).

    Google Scholar 

  9. C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion, 45, No. 1–2, 16–29 (2007).

    Article  MathSciNet  Google Scholar 

  10. P. J. Cobelli, V. Pagneux, A. Maurel, and P. Petitjeans, “Experimental study on water-wave trapped modes,” J. Fluid Mech. 666, 445–476 (2011).

    Article  Google Scholar 

  11. F. Ursell, “Trapping modes in the theory of surface waves,” Proc. Camb. Philos. Soc. 47, No. 2, 347–358 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  12. D. S. Jones, “The eigenvalues of ∇2 u + λu = 0 when the boundary conditions are given on semi-infinite domains,” Proc. Camb. Philos. Soc. 49, No. 4, 668–684 (1953).

    Article  MATH  Google Scholar 

  13. F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves,” J. Fluid Mech. 183, 421–437 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. A. Nazarov, “Simple method for finding trapped modes in problems of the linear theory of surface waves,” Dokl. Akad. Nauk, Ross. Akad. Nauk 429, No. 6, 746–749 (2009); English transl.: Dokl. Math. 80, No. 3, 914–917 (2009).

  15. P. McIver and D. V. Evans, “The trapping of surface waves above a submerged, horizontal cylinder,” J. Fluid Mech. 151, 243–255 (1985).

    Article  MathSciNet  Google Scholar 

  16. R. Porter and D. V. Evans, “The trapping of surface waves by multiple submerged horizontal cylinders,” J. Eng. Math. 34, 417–433 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  17. D. V. Evans and R. Porter, “Trapped modes about multiple cylinders in a channel,” J. Fluid Mech. 339, 331–356 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. J. Simon, “On a bound for the frequency of surface waves trapped near a cylinder spanning a channel,” Theor. Comput. Fluid Dyn. 4, No. 2, 71–78 (1992).

    Article  MATH  Google Scholar 

  19. O. V. Motygin, “On frequency bounds for modes trapped near a channel-spanning cylinder,” Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 456, No. 2004, 2911–2930 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  20. O. V. Motygin, “Estimates of the trapped-mode frequencies of oscillation of a liquid in the presence of submerged bodies” [in Russian], Prikl. Mat. Mekh. 69, No. 5, 818–828 (2005); English transl.: J. Appl. Math. Mech. 69, 733–742 (2005).

  21. M. McIver, “Trapped modes supported by submerged obstacles,” Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 456, No. 2000, 1851–1860 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Porter, “Trapping of water waves by pairs of submerged cylinders,” Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 458, No. 2019, 607–624 (2002).

    Article  MATH  Google Scholar 

  23. M. Abramowitz and I. Stegun (Eds.) Handbook of Mathematical Functions, Dover, New York (1965).

    Google Scholar 

  24. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1995).

    MATH  Google Scholar 

  25. V. P. Trofimov, “The root subspaces of operators depending analytically on a parameter” [in Russian], Mat. Issled. 3, No. 9, 117–125 (1968).

    MATH  MathSciNet  Google Scholar 

  26. M. S. Birman and M. Z. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space [in Russian], Leningr. Univ. Press, Leningrad (1980); English transl.: Reidel, Dordrecht (1987).

  27. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  28. G. Vainikko, Multidimensional Weakly Singular Integral Equations, Springer, Berlin (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Motygin.

Additional information

Translated from Problems in Mathematical Analysis 55, March 2011, pp. 65–80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motygin, O.V. Trapped modes in a linear problem of the theory of surface water waves. J Math Sci 173, 717–736 (2011). https://doi.org/10.1007/s10958-011-0269-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0269-y

Keywords

Navigation