On variational problems and nonlinear elliptic equations with nonstandard growth conditions

We study elliptic problems where the boundedness condition is “separated” from the coercivity condition, which leads to the loss of uniqueness, regularity, and some other properties of solutions. We propose new methods allowing us to establish the existence results for such problems, in particular, in situations where a weak solution to the Dirichlet problem is not unique and the energy equality fails. We develop a special techniques of the weak convergence of fluxes to a flux owing to which it is possible to pass to the limit in nonlinear terms. Based on this technique, we establish the solvability of the well-known thermistor problem without any restrictions on the spatial dimension and smallness of the data. Various model examples and counterexamples are also given. Bibliography: 72 titles. Illustrations: 3 figures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1964); English transl.: Academic Press, New York etc. (1968).

  2. 2.

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (2001).

    Google Scholar 

  3. 3.

    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications Academic Press, New York etc. (1980).

    Google Scholar 

  4. 4.

    B. V. Bojarski, “Generalized solutions of a system of first order differential equations of elliptic type with discontinuous coefficients” [in Russian], Mat. Sb. 43, No. 4, 451–503 (1957).

    MathSciNet  Google Scholar 

  5. 5.

    N. G. Meyers, “An L p-estimate for the gradient of solution of second order elliptic divergence equations,” Ann. Scuola Norm. Super. Pisa 17, 185–206 (1963).

    MathSciNet  Google Scholar 

  6. 6.

    F. W. Gehring, “The L p-integrability of the partial derivatives of a quasiconformal mapping,” Acta Math. 130, 265–277 (1973).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    M. Giaquinta and G. Modica, “Regularity results for some classes of higher order nonlinear elliptic systems,” J. Reine Angew. Math. 311/312, 145–169 (1979).

    MathSciNet  Google Scholar 

  8. 8.

    V. V. Zhikov, “Questions of convergence, duality, and averaging for a certain class of functionals in variational calculus” [in Russian], Dokl. Akad. Nauk SSSR 267, NO. 3, 524–528 (1982); English transl.: Sov. Math., Dokl. 26, 627–630 (1982).

  9. 9.

    V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory.” [in Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 50, No. 4, 675–710 (1986); English transl.: Math. USSR, Izv. 29, No. 1, 33–66 (1987).

  10. 10.

    M. Giaquinta, “Growth conditions and regularity, a counterexample,” Manuscripta Math. 59, 245–248 (1987).

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    P. Marcellini, “Un exemple de solution discontinue d’un probleme variationnel dans le cas scalaire,” Preprint Dip. Mat. “U. Dini,” Univ, Firenze 11 (1987).

  12. 12.

    D. Edmunds and J. Rakoshik, “Sobolev embeddings with variable exponent,” Studia Math. 143, No. 3, 267–293 (2000).

    MathSciNet  MATH  Google Scholar 

  13. 13.

    X. Fan, J. Shen, and D. Zhao, “Sobolev embedding theorems for W k,p(·),” J. Math. Anal. 262, No. 2, 749–760 (2001).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    V. V. Zhikov, “Lavrentiev phenomenon and homogenization for some variational problems,” In: Proc. Second Workshop “Composite Media and Homogenization Theory”, World Scientific (1995).

  15. 15.

    V. V. Zhikov, “On Lavrentiev’s Phenomenon,” Russian J. Math. Phys. 3, 249–269 (1995).

    MathSciNet  MATH  Google Scholar 

  16. 16.

    V. V. Zhikov, “On Lavrent’ev’s effect” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 345, No. 1, 10–14 (1995); English transl.: Dokl. Math. 52, No. 3, 325–329 (1995).

  17. 17.

    V. V. Zhikov, “On some variational problems,” Russian J. Math. Phys. 5, No. 1, 105–116 (1997).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    V. V. Zhikov, ‘ “Meyers type estimates for the solution of a nonlinear Stokes system” [in Russian], Differ. Uravn. 33, No. 1, 108–115 (1997); Differ. Equations 33, No. 1, 108–115 (1997).

  19. 19.

    X. Fan, A Class of De Giorgi Type and Hölder Continuity of Minimizers of Variational with m(x)-Growth Condition, China Lanzhou Univ. (1995).

  20. 20.

    Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition” [in Russian], Differ. Uravn. 33, No. 12, 1651–1660 (1997); English transl.: Differ. Equations 33, No. 12, 1653–1663 (1997).

  21. 21.

    Yu. A. Alkhutov and O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition” [in Russian], Izv. Ross. Akad. Nauk, Ser. Mat. 68, No. 6, 3–60 (2004); English transl.: Izv. Math. 68, No. 6, 1063–1117 (2004).

  22. 22.

    O. V. Krasheninnikova, “Continuity at a point for solutions to elliptic equations with a nonstandard growth condition” [in Russian], Tr. Mat. Inst. Steklova 236, 204–211 (2002); English transl.: Proc. Steklov Inst. Math. 236, 193–200 (2002).

  23. 23.

    E. Acerby and G. Mingione, “Regularity results for a class of functionals with nonstandard growth,” Arch. Ration. Mech. Anal. 156, 121–140 (2001).

    MathSciNet  Article  Google Scholar 

  24. 24.

    E. Acerby and G. Mingione, “Regularity results for stationary electro-rheological liquids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002).

    MathSciNet  Article  Google Scholar 

  25. 25.

    S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheollogical viscous flows,” Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52, No. 1, 19–36 (2006).

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    V. V. Zhikov and S. E. Pastukhova, “Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent” [in Russian], Mat. Sb. 199, No. 12, 19–52 (2008); English transl.: Sb. Math. 199, No. 12, 1751–1782 (2008).

  27. 27.

    S. N. Antontsev and S. I. Shmarev, “Elliptic equations and systems with nonstandard growth conditions existence, uniqueness and localization properties of solutions,” J. Nonlinear Anal. 65, 728–761 (2006).

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    S. N. Antontsev and S. I. Shmarev, “Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions,” In: Stationary Partial Differential Equations Vol. 3, pp. 1–100. Elsevier, Amsterdam (2006).

    Google Scholar 

  29. 29.

    V. V. Zhikov, “Remarks on the uniqueness of a solution of the Dirichlet problem for secondorder elliptic equations with lower-order terms” [in Russian], Funkts. Anal. Prilozh. 38, No. 3, 15–28 (2004); English transl.: Funct. Anal. Appl. 38, No. 3, 173–183 (2004).

  30. 30.

    K. R. Rajagopal and M. Ruzicka, “Om the modeling of electrorheological materials,” Mech. Res. Commun. 23, 401–407 (1996).

    Article  MATH  Google Scholar 

  31. 31.

    M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer, Berlin (2000).

    Google Scholar 

  32. 32.

    J.-L. Lions, Quelques Méthods de Résolution des Problèmes aux Limites. Non- Lineares, Dunod, Paris (1969).

    Google Scholar 

  33. 33.

    P. Billingsley, Convergence of Probability Measures New York-London-Sydney-Toronto: John Wiley and Sons, New York etc. (1968).

  34. 34.

    V. V. Zhikov and S. E. Pastukhova, “On the compensated compactness principle” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 433, No. 5, 1–6 (2010); English transl.: Dokl. Math. 82, No. 1, 590–595 (2010).

  35. 35.

    F. Murat, “Compacite par compensation,” Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Fis. Mat. 5, 481–507 (1978).

    MathSciNet  Google Scholar 

  36. 36.

    V. V. Zhikov, “ “On the technique for passing to the limit in nonlinear elliptic equations” [in Russian], Funkts. Anal. Prilozh. 43, No. 2, 19–38 (2009); English transl.: Funct. Anal. Appl. 43, No. 2, 96–112 (2009).

  37. 37.

    V. V. Zhikov, “On passage to the limit in nonlinear elliptic equations” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 420, No. 3, 300–305 (2008); English transl.: Dokl. Math. 77, No. 3, 383–387 (2008).

  38. 38.

    V. V. Zhikov, “On the weak convergence of fluxes to a flux” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 430, No. 4, 439–443 (2010); English transl.: Dokl. Math. 81, No. 1, 58–62 (2010).

  39. 39.

    L. Boccardo and T. Gallouet, “Nonlinear elliptic and parabolic equations involving measure data,” J. Funct. Anal. 87, 149–169 (1989).

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    L. Tonelli, “Sur une methode directedu calcul des variations,” Rend. Circ. Mat. Palermo 39, 223–264 (1915).

    Google Scholar 

  41. 41.

    M. Lavrentiev, “Sur quelques problemes du calcul des variations,” Ann. Math. Pura Appl. 4, 107–124 (1926).

    Google Scholar 

  42. 42.

    L. Tonelli, Fondamenti di calcolo delle variazioni I. II Zanichelli, Bologna (1921–1923).

  43. 43.

    B. Mania, “Sopra un esempio di Lavrentieff,” Boll. Umi. 13, 146–153 (1934).

    MathSciNet  Google Scholar 

  44. 44.

    G. Buttazzo, M. Giaquinta, and S. Hildebrandt, One-Dimensional Variational Problems. An Introduction and its Applications, Clarendon Press, Oxford (1998).

    Google Scholar 

  45. 45.

    G. Buttazzo and M. Belloni, A Servey on Old and Recent Results about the Gap Phenomenon, Kluwer Acad. Publ., Dordecht (1995).

    Google Scholar 

  46. 46.

    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam etc. (1976).

    Google Scholar 

  47. 47.

    V. V. Zhikov, “Weighted Sobolev spaces” [in Russian], Mat. Sb. 189, No. 8, 27–58 (1998); English transl.: Sb. Math. 189, No. 8, 1139–1170 (1998).

  48. 48.

    T. Gallouet, J. Lederer, F. Murat, and L. Tartar, “On a turbulent system with unbounded eddy viscosities,” Nonlinear Anal., Theory Methods Appl. 52, No. 4, A, 1051–1068 (2003).

    Google Scholar 

  49. 49.

    M. Rockner and T. S. Zhang, “Uniqueness of generalized Schr¨odinger operators and applications,” J. Funct. Anal. 105, No. 1, 187–231 (1992).

    MathSciNet  Article  Google Scholar 

  50. 50.

    P. Cattiax and M. Fradon, “Entropy, reversible diffusion processes, and Markov uniqueness,” J. Funct. Anal. 138, No. 1, 243–272 (1996).

    MathSciNet  Article  Google Scholar 

  51. 51.

    V. I. Bogachev, Differentiable Measures and the Malliavin Calculus [in Russian], Moscow–Izhevsk (2008); English transl.: Am. Math. Soc., Providence, RI (2010).

  52. 52.

    Yu. A. Alkhutov and V. V. Zhikov, “On the Hölder property of one elliptic equation” [in Russian], Sovrem. Mat. Prilozh. 10, 8–21 (2003); English transl.: J. Math. Sci., New York 129, No. 1, 3523–3536 (2005).

  53. 53.

    Yu. G. Reshetnyak, “General theorems on semicontinuity and on convergence with a functional” [in Russian], Sib. Mat. Zh. 8, No. 5, 1051–1069 (1967); English transl.: Sib. Math. J. 8, No. 5, 801–816 (1967).

  54. 54.

    A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974); English transl.: North-Holland, Amsterdam etc. (1979).

  55. 55.

    V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals [in Russian], Nauka, Moscow (1993).

    Google Scholar 

  56. 56.

    V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin (1994).

    Google Scholar 

  57. 57.

    V. V. Zhikov, “On passage to the limit in nonlinear variational problems” [in Russian], Mat. Sb. 138, No. 8, 47–84 (1992); English transl.: Russ. Acad. Sci., Sb., Math. 76, No. 2, 427–459 (1993).

  58. 58.

    N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Interscience Publ. New York etc. (1958).

    Google Scholar 

  59. 59.

    W. Orlicz, “Uber konjugierte Exponentenfolgen,” Stud. Math. 3, 200–211 (1931).

    MATH  Google Scholar 

  60. 60.

    F.-Y. Maeda, “Poincaré type inequality and an integrability result for variable exponent,” JIPAM, J. Inequal. Pure Appl. Math. 9, No. 3, Paper No. 68, electronic only (2008).

  61. 61.

    L. Diening, “Maximal functions in generalized L p (·) spaces,” Math. Inequal. Appl. 7, No. 2, 245–254 (2004).

    MathSciNet  MATH  Google Scholar 

  62. 62.

    V. V. Zhikov, “On density of smooth functions in Sobolev–Orlich spaces” [in Russian], Zap. Nauchn. Sem. POMI 310, 67–81 (2004); English transl.: J. Math. Sci., New York 132, No. 3, 285–294 (2006).

  63. 63.

    L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Ration etc. (1992).

    Google Scholar 

  64. 64.

    P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel (1997).

    Google Scholar 

  65. 65.

    K. Zhang, “Biting theorems for Jacobians and their applications,” Ann. Inst. Henri Poincaré, Anal. Non Lineaire 7, No. 4, 345–365 (1990).

    MATH  Google Scholar 

  66. 66.

    D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pèrez, “The boundedness of classical operators on variable L p spaces,” Ann. Acad. Sci. Fenn. Math. 31, No. 1, 239–264 (2006).

    MathSciNet  Google Scholar 

  67. 67.

    L. Diening and M. Ruzicka, “Calderón–Zygmund operators on generalized Lebesgue spaces L p(·) and problems related to fluid dynamics,” J. Reine Angew. Math. 563 197–220, 2003.

    MathSciNet  Article  MATH  Google Scholar 

  68. 68.

    L. Diening, J. Malek, and M. Steinhauer, “On Lipschitz truncation on Sobolev functions (with variable exponent) and their selected applications,” ESAIM, Control Optim. Calc. Var. 14 No. 2, 211–232 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  69. 69.

    A. P. Calderón and A. Zygmund, “On the existence of certain singular integrals,” Acta Math. 88, No. 1, 85–139 (1952).

    MathSciNet  Article  MATH  Google Scholar 

  70. 70.

    V. V. Zhikov and S. E. Pastukhova, “On Gehring’s lemma” Dokl. Akad. Nauk, Ross. Akad. Nauk 419, No. 4, 443–448 (2008); English transl.: Dokl. Math. 77, No. 2, 243–248 (2008).

  71. 71.

    V. V. Zhikov, “Solvability of the three-dimensional thermistor problem” [in Russian], Tr. Mat. Inst. Steklova 261, 101–114 (2008); English transl.: Proc. Steklov Inst. Math. 261, 98–111 (2008).

  72. 72.

    V. V. Zhikov, “Existence theorem for some pairs of coupled elliptic equations” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 418, No. 4, 447–452 (2008); English transl.: Dokl. Math. 77, No. 1, 80–84 (2008).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhikov.

Additional information

Translated from Problems in Mathematical Analysis 54, February 2011, pp. 23–112.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhikov, V.V. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J Math Sci 173, 463–570 (2011). https://doi.org/10.1007/s10958-011-0260-7

Download citation

Keywords

  • Weak Solution
  • Elliptic Equation
  • Dirichlet Problem
  • Weak Convergence
  • Orlicz Space