Skip to main content
Log in

Curvature and tachibana numbers

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of this paper is to define the rth Tachibana number t r of an n-dimensional closed and oriented Riemannian manifold (M,g) as the dimension of the space of all conformal Killing r-forms for r = 1, 2, . . . , n − 1 and to formulate some properties of these numbers as an analog of properties of the rth Betti number b r of a closed and oriented Riemannian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Benn and P. P. Charlton, “Dirac symmetry operators from conformal Killing–Yano tensors,” Classical Quantum Gravity, 14, 1037–1042 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).

    MATH  Google Scholar 

  3. J. P. Bourguignon, “Formules de Weitzenb¨ok en dimension 4,” in: Semin. A. Besse géom. Riemannienne dimension 4, Cedic. Ferman, Paris (1981).

  4. T. Branson, “Stein–Weiss operators and ellipticity,” J. Funct. Anal., 151, 334–383 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Kashiwada, “On conformal Killing tensors,” Natur. Sci. Rep. Ochanomizu Univ., 19, 67–74 (1968).

    MATH  MathSciNet  Google Scholar 

  6. M. Kora, “On conformal Killing forms and the proper space of Δ for p-forms,” Math. J. Okayama Univ., 22, 195–204 (1980).

    MATH  MathSciNet  Google Scholar 

  7. J. Mikeš, “On existence of nontrivial global geodesic mappings of n-dimensional compact surfaces of revolution,” in: Proc. Conf. “Differential Geometry and Its Applications,” August 27–September 2, 1989, Brno, Czechoslovakia, Word Scientific Press, Singapore (1990), pp. 129–137.

  8. S. P. Novikov, Topology. I, Encycl. Math. Sci., Vol. 12, Springer-Verlag, Berlin (1996).

  9. R. S. Palais, Seminar on the Atiyah–Singer Index Theorem. Annals of Math. Studies. No. 57, Princeton Univ. Press, Princeton (1965).

    Google Scholar 

  10. P. Petersen, Riemannian Geometry, Grad. Texts Math., Vol. 171, Springer-Verlag, New York (1997).

  11. G. de Rham, Variétés différentiables formes, courants, formes harmoniques, Hermann, Paris (1955).

    MATH  Google Scholar 

  12. S. E. Stepanov, “On a generalization of the Kashiwada theorem,” in: Webs and Quasigroups, Tver State Univ. Press (1999), pp. 162–167.

  13. S. E. Stepanov, “New theorem of duality and its applications,” in: Proc. of Yearly Int. Summer School-Seminar “Recent problems in field theory,” 1999–2000, Kazan State Univ. and Institute for Theoretical and Experimental Physics of the Russian Academy of Sciences, Kazan (2000), pp. 371–375.

  14. S. E. Stepanov, “On an isomorphism of the spaces of conformal Killing forms,” Differentsial’naya Geom. Mnogoobraz. Figur, 31, 81–84 (2000).

    MATH  Google Scholar 

  15. S. E. Stepanov, “On conformal Killing 2-forms of the electromagnetic field,” J. Geom. Phys., 33, 191–209 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. E. Stepanov, “The Killing–Yano tensor,” Theor. Math. Phys., 134, No. 3, 333–338 (2003).

    Article  MATH  Google Scholar 

  17. S. E. Stepanov, “A new strong Laplacian on exterior differential forms,” Math. Notes, 76, 420–425 (2004).

    Article  MATH  Google Scholar 

  18. S. E. Stepanov, “Some conformal and projective scalar invariants of Riemannian manifolds,” Math. Notes, 80, 848–852 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  19. S. E. Stepanov, “Vanishing theorems in affine, Riemannian and Lorenz geometries,” J. Math. Sci., 141, 929–964 (2007).

    Article  MathSciNet  Google Scholar 

  20. S. E. Stepanov, “On an analogue of the Poincaré duality theorem for Betti numbers,” in: Abstracts of the Int. Conf. “Differential Equations and Topology” Dedicated to the Centennial Anniversary of L. S. Pontryagin, June 17–22, 2008, Steklov Mathematical Institute of the Russian Academy of Sciences and Lomonosov Moscow State University, Moscow (2008), pp. 456–457.

  21. S. E. Stepanov and V. M. Isaev, “Examples of Killing and conformal Killing forms,” Differentsial’naya Geom. Mnogoobraz. Figur, 32, 57–72 (2001).

    Google Scholar 

  22. S. Tachibana, “On Killing tensors in a Riemannian space,” Tôhoku Math. J., 20, 257–264 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Tachibana, “On conformal Killing tensors in a Riemannian space,” Tôhoku Math. J., 21, 56–64 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Yano and S. Bochner, Curvature and Betti Numbers, Princeton Univ. Press, Princeton (1953).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Stepanov.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 15, No. 6, pp. 211–222, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanov, S.E. Curvature and tachibana numbers. J Math Sci 172, 901–908 (2011). https://doi.org/10.1007/s10958-011-0232-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0232-y

Keywords

Navigation