Skip to main content
Log in

Thermodynamic pressure and its fluctuations in a classical ideal gas of relativistic particles

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A full and consecutive analysis of the dynamic and thermodynamic properties of an ideal gas of relativistic particles with Lorentz–Einstein dispersion law and arbitrary number of translational degrees of freedom is carried out. Gibbs statistical mechanics is used along with Bogolyubov’s concept of quasiaverages and the generalized version of the Bogolyubov–Zubarev theorem in the classical regime well beyond the temperature of the quantum degeneracy. General expressions for a pair of equations of state, namely thermic (for the pressure) and caloric (for the inner energy) are found; the fluctuations of these quantities are also found: the compressibility and heat capacity, respectively. All expressions are found in closed form and studied in low- and high-temperature limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov, “Quasiaverages in the problems of statistical mechanics,” Phys. Abh. aus der SU, 6, 1–229 (1962).

    Google Scholar 

  2. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus [in Russian], Fizmatlit, Moscow (1961).

    Google Scholar 

  3. R. H. Fowler, Statistical Mechanics, Cambridge Univ. Press, Cambridge (1936).

    Google Scholar 

  4. J. W. Gibbs, Elementary Principles in Statistical Mechanics, Yale Univ. Press, New Haven (1902).

    MATH  Google Scholar 

  5. W. Glaser, “Zur Theorie des idealen Gases,” Ann. Phys., 94, 317–327 (1935); “Korpuskel und Lichtquanten,” ibid, 677–691.

  6. F. Jüttner, “Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie,” Ann. Phys., 34, 856–882 (1911).

    Article  Google Scholar 

  7. F. Jüttner, “Die relativistische Quantentheorie desidealen Gases,” Ann. Phys., 47, 542–566 (1928).

    Google Scholar 

  8. T. L. Hill, Statistical Mechanics. Principles and Selected Applications, McGraw-Hill, New York (1956).

    MATH  Google Scholar 

  9. I. Keita, Statistical Mechanics of the Classical Relativistic Gas with Account of the Pressure Fluctuations [in Russian], PhD Thesis, People’s Friendship University of Russia (2007).

  10. M. J. Klein, “Pressure fluctuations,” Phys., 26, 1073–1079 (1960).

    Google Scholar 

  11. I. A. Kvasnikov, Thermodynamic and Statistical Physics, Vol. 1 [in Russian], Izd. Mosk. Univ., Moscow (1991).

    Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1, Addison-Wesley, Reading (1958).

  13. P. T. Landsberg, ed., Problems in Thermodynamic and Statistical Physics, PION, London (1971).

  14. N. N. Lebedev, Special Functions and Their Applications [in Russian], GITTL, Moscow (1953).

    Google Scholar 

  15. A. Münster, “Fluctuation theory,” in: Termodinamika dei Processi Irreversibili, Scuola “Enrico Fermi.” X, Bologna (1960); “Fluctuations en pression,” Phys., 26, 1117–1123 (1960).

  16. Yu. G. Rudoy and I. Keita, “Dynamic pressure and its fluctuations for the ideal gas of relativistic particles,” Vestn. Ross. Univ. Druzhby Narodov. Ser. Mat., Inform., Fiz., No. 1-2, 84–93. (2007).

  17. Yu. G. Rudoy, Yu. P. Rybakov, and I. Keita, “Thermodynamic equation of state for the ideal gas and their generalization by means of the effective parameters,” Fiz. Obraz. Vuz., 13, No. 3, 41–56. (2007).

    Google Scholar 

  18. Yu. G. Rudoy and A. D. Sukhanov, “Thermodynamic fluctuations within the Gibbs and Einstein approaches,” Physics: Uspekhi, 43, No. 12, 1169–1199 (2000).

    Article  Google Scholar 

  19. Ya. P. Terletzky, Statistical Physics [in Russian], Vysshaya shkola, Moscow (1994).

  20. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  21. H. Wergeland, Det. Kgl. Norske Vid. Forh., 28, 106 (1955).

    MathSciNet  Google Scholar 

  22. D. N. Zubarev, Statistische Thermodynamic der Nichtgleigewicht, Akademie, Berlin (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Rudoy.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 15, No. 6, pp. 167–199, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudoy, Y.G., Rybakov, Y.P. & Keita, I. Thermodynamic pressure and its fluctuations in a classical ideal gas of relativistic particles. J Math Sci 172, 870–893 (2011). https://doi.org/10.1007/s10958-011-0230-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0230-0

Keywords

Navigation