Skip to main content
Log in

Numerical simulation of the resonant forbidden bragg reflection in germanium

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

“Forbidden” reflections are observed in synchrotron radiation diffraction when the energy of incident radiation is close to the absorption edges in crystals. In the present paper, a new method for calculating the intensity of thermal-motion-induced forbidden reflections is proposed. It includes two steps: simulation of the temporary atomic displacements with the help of the ab initio molecular dynamics followed by quantum-mechanical calculations of the resonant scattering amplitude for various configurations. This technique is applied to the calculation of the 600 reflection thermal behavior in Ge and gives an adequate quantitative fitting of experimental data. The proposed simulation method of the thermal-motion-induced forbidden reflections is suitable for any crystal structure and promises to explain many results obtained up to now in synchrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, Pergamon Press, Oxford (1965).

    MATH  Google Scholar 

  2. B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys., 27, 1208–1209 (1957).

    Article  Google Scholar 

  3. B. J. Alder and T. E. Wainwright, “Studies in molecular dynamics. I. General method,” J. Chem. Phys., 31, 459–466 (1959).

    Article  MathSciNet  Google Scholar 

  4. W. Andreoni and A. Curioni, “New advances in chemistry and material science with CPMD and parallel computing,” Parallel Comput., 26, 819–842 (2000).

    Article  MATH  Google Scholar 

  5. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Rev. Mod. Phys., 73, 515–562 (2001).

    Article  Google Scholar 

  6. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., 81, 3684–3690 (1984).

    Article  Google Scholar 

  7. V. B. Berestetskii, L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, Butterworth-Heinemann, Amsterdam (2007).

    Google Scholar 

  8. F. de Bergevin and M. Brunel, “Diffraction of X-rays by magnetic materials. I. General formulae and measurements on ferro- and ferrimagnetic compounds,” Acta Cryst. A, 37, 314–324 (1981).

    Article  Google Scholar 

  9. F. de Bergevin and M. Brunel, “Diffraction of X-rays by magnetic materials. II. Measurements on antiferromagnetic Fe2O3,” Acta Cryst. A, 37, 324–331 (1981).

    Article  Google Scholar 

  10. M. A. Blokhin and I. G. Shveitser, X-Ray Spectroscopy Reference Book [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  11. M. Blume, “Magnetic effects in anomalous dispertion,” in: G. Materlik, C. J. Sparks, and K. Fisher, eds., Resonant Anomalous X-Ray Scattering, Elsevier, Amsterdam (1994).

    Google Scholar 

  12. R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett., 55, 2471–2474 (1985).

    Article  Google Scholar 

  13. S. P. Collins, V. D. Laundy, V. E. Dmitrienko, D. Mannix, and P. Thompson, “Temperature-dependent forbidden resonant x-ray scattering in zinc oxide,” Phys. Rev. B, 68, 064110-1–064110-4 (2003).

    Google Scholar 

  14. C. Detlefs, “Polarization analysis of K-edge resonant X-ray scattering of germanium,” Physica B, 345, 45–48 (2004).

    Article  Google Scholar 

  15. V. E. Dmitrienko, “Forbidden reflections due to anisotropic X-ray susceptibility of crystals,” Acta Cryst. A, 39, 29–35 (1983).

    Article  Google Scholar 

  16. V. E. Dmitrienko, “Anisotropy of X-ray susceptibility and Bragg reflections in cubic crystals,” Acta Cryst. A, 40, 89–95 (1984).

    Article  Google Scholar 

  17. V. E. Dmitrienko, K. Ishida, A. Kirfel, and E. N. Ovchinnikova, “Polarization anisotropy of X-ray atomic factors and ‘forbidden’ resonant reflections,” Acta Cryst. A, 61, 481–493 (2005).

    Article  Google Scholar 

  18. V. E. Dmitrienko and E. N. Ovchinnikova, “Resonant X-ray diffraction: ‘Forbidden’ Bragg reflections induced by thermal vibrations and point defects,” Acta Cryst. A, 56, 340–347 (2000).

    Article  Google Scholar 

  19. V. E. Dmitrienko and E. N. Ovchinnikova, “Chirality-induced ‘forbidden’ reflection in X-ray resonant scattering,” Acta Cryst. A, 57, 642–648 (2001).

    Article  Google Scholar 

  20. V. E. Dmitrienko and E. N. Ovchinnikova, “Resonant X-ray diffraction by crystals: New method of studying the structure and properties of materials,” Crystallography Reports, 48, Suppl. 1, S52–S68 (2003).

    Google Scholar 

  21. V. E. Dmitrienko, E. N. Ovchinnikova, and K. Ishida, “X-ray spectroscopy of thermally distorted electronic states in crystals,” JETP Lett., 69, 938–942 (1999).

    Article  Google Scholar 

  22. V. E. Dmitrienko, E. N. Ovchinnikova, A. M. Kolchinskaya, A. P. Oreshko, D. I. Bazhanov, J. Kokubun, K. Ishida, S. P. Collins, and E. Kh. Mukhamedzhanov, “Modeling of the thermal-motion-induced effects in resonant X-ray diffraction observed for Ge and ZnO,” AIP Conf. Proc., 999, 1–11 (2008).

    Article  Google Scholar 

  23. K. D. Finkelstein, Q. Shen, and S. Shastri, “Resonant x-ray diffraction near the iron K-edge in hematite,” Phys. Rev. Lett., 69, 1612–1615 (1992).

    Article  Google Scholar 

  24. D. Gibbs, D. R. Harshman,E. D. Isaaks, D. B. McWhan, D. Mills, and C. Vettier, “Polarization and resonance properties of magnetic scattering in holmium,” Phys. Rev. Lett., 61, 1241–1244 (1988).

    Article  Google Scholar 

  25. S. Goedecker, J. Hutter, and M. Teter, “Separable dual-space Gaussian pseudopotentials,” Phys. Rev. B, 54, 1703–1710 (1996).

    Article  Google Scholar 

  26. T. Hahn, ed., International Tables for Crystallography, Kluwer, Dordrecht (1996).

    Google Scholar 

  27. L. Hedin and B. I. Lendqvist, “Explicit local exchange-correlation potential,” J. Phys. C, 4, 2064–2083 (1971).

    Article  Google Scholar 

  28. J. L. Hodeau, V. Favre-Nicolin, S. Bos, H. Renevier, E. Lorenzo, and J.-F. Berar, “Resonant diffraction,” Chem. Rev., 101, 1834–1867 (2001).

    Article  Google Scholar 

  29. W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A, 31, 1695–1697 (1985).

    Article  Google Scholar 

  30. W. Hoppe and R. Mason, eds., Advances in Structure Research by Diffraction Methods, Pergamon Press, Oxford (1975).

    Google Scholar 

  31. J. Hutter, Introduction to Ab Initio Molecular Dynamics, Univ. of Zurich (2002).

  32. Y. Joly, “X-ray absorption near-edge structure calculations beyond the muffin-tin approximation,” Phys. Rev. B, 63, 125120–125130 (2001).

    Article  Google Scholar 

  33. A. Kirfel, J. Grybos, and V. E. Dmitrienko, “Phonon-electron interaction and vibration correlation in germanium within a broad temperature interval,” Phys. Rev. B, 66, 165202-1–165202-7 (2002).

    Google Scholar 

  34. J. Kokubun, M. Kanazava, K. Ishida, and V. E. Dmitrienko, “Temperature-induced distortions of electronic states observed via forbidden Bragg reflections in germanium,” Phys. Rev. B, 64, 073203–073207 (2001).

    Article  Google Scholar 

  35. D. C. Koningsberger “X-ray absorption: Principles,” D. C. Koningsberger and B. Prins, eds. in: Applications, Techniques of EXAFS, SEXAFS and XANES, Wiley, New York (1987).

  36. S. W. Lovesey and E. Balcar, “A theoretical framework for absorption (dichroism) and the resonance-enhanced scattering of X-rays by magnetic material,” J. Phys.: Condens. Matter, 8, 10983–11007 (1996).

    Article  Google Scholar 

  37. D. Marx and J. Hutter, “Modern methods and algorithms of quantum chemistry,” Forschungszentrum Julich, NIC Ser., 1, 301–449 (2000).

    Google Scholar 

  38. S. Di Matteo, Y. Joly, A. Bombardi, L. Paolasini, F. de Bergevin, and C. R. Natoli, “Local chiral-symmetry breaking in globally centrosymmetric crystals,” Phys. Rev. Lett., 91, 25402-1–25402-3 (2003).

    Google Scholar 

  39. E. Kh. Mukhamedzhanov, M. M. Borisov, A. N. Morkovin, A. A. Antonenko, A. P. Oreshko, E. N. Ovchinnikova, and V. E. Dmitrienko, “Absolute intensity and phase of the resonant X-ray scattering from a germanium crystal,” JETP Letters, 86, 783–787 (2007).

    Article  Google Scholar 

  40. S. Nose, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., 81, 511–519 (1984).

    Article  Google Scholar 

  41. A. P. Oreshko, V. E. Dmitrienko, Y. Joly, A. Kirfel, and E. N. Ovchinnikova, “Resonant X-ray diffraction in germanium: Temperature increase in intensity of forbidden Bragg reflections,” Bull. RAS: Physics, 68, No. 4, 655–660 (2004).

    Google Scholar 

  42. E. N. Ovchinnikova, V. E. Dmitrienko, K. Ishida, A. Kirfel, S. P. Collins, A. P. Oreshko, D. Cabaret, R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, E. V. Krivitskii, and B. P. Tolochko, “Atomic displacement effects in near-edge resonant ‘forbidden’ reflections,” NIM A, 245, 122–126 (2005).

    Article  Google Scholar 

  43. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  Google Scholar 

  44. P. M. Platzman and N. Tzoar, “Magnetic scattering of X rays from electrons in molecules and solids,” Phys. Rev. B, 2, 3556–3559 (1970).

    Article  Google Scholar 

  45. J. J. Rehr and R. C. Alberts, “Theoretical approaches to X-ray absorption fine structure,” Rev. Modern Phys., 72, 621–654 (2000).

    Article  Google Scholar 

  46. J. A. Reisslend, The Physics of Phonons, Wiley, New York (1973).

    Google Scholar 

  47. M. Schowalter, A. Rosenauer, J. T. Titantah, and D. Lamoen, “Computation and parametrization of the temperature dependence of Debye–Waller factors for group IV, III-V and II-VI semiconductors,” Acta Cryst. A, 65, 5–17 (2009).

    Article  Google Scholar 

  48. L. Séve, N. Jaouen, J. M. Tonnerre, D. Raoux, F. Bartolomé, M. Arend, W. Felsch, A. Rogalev, J. Goulon, C. Gautier, and J. F. Bérar, “Profile of the induced 5d magnetic moments in Ce/Fe and La/Fe multilayers probed by X-ray magnetic-resonant scattering,” Phys. Rev. B, 60, 9662–9674 (1999).

    Google Scholar 

  49. J.-M. Tonnerre, “X-ray magnetic scattering,” in: Proc. of the Int. School “Magnetism and Synchrotron Radiation,” 245–273 (1996).

  50. D. H. Templeton and L. K. Templeton, “X-ray dichroism and polarized anomalous scattering of the uranyl ion,” Acta Cryst. A, 38, 62–67 (1982).

    Article  Google Scholar 

  51. D. H. Templeton and L. K. Templeton, “Tetrahedral anisotropy of x-ray anomalous scattering,” Phys. Rev. B., 49, 14850–14853 (1994).

    Article  Google Scholar 

  52. L. I. Yastrebov and A. A. Katsnelson, Foundations of One-Electron Theory of Solids, Springer, Berlin (1987).

    Google Scholar 

  53. www.cpmd.org.

  54. www-cristallo.grenoble.cnrs.fr/simulation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Oreshko.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 15, No. 6, pp. 151–166, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oreshko, A.P., Dmitrienko, V.E. & Ovchinnikova, E.N. Numerical simulation of the resonant forbidden bragg reflection in germanium. J Math Sci 172, 859–869 (2011). https://doi.org/10.1007/s10958-011-0229-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0229-6

Keywords

Navigation