Skip to main content
Log in

Random walks on strict partitions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We construct a diffusion process in the infinite-dimensional simplex consisting of all nonincreasing infinite sequences of nonnegative numbers with sum less than or equal to one. The process is constructed as a limit of a certain sequence of Markov chains. The state space of the nth chain is the set of all strict partitions of n (that is, partitions with distinct parts). As n →∞, these random walks converge to a continuous-time strong Markov process in the infinite-dimensional simplex. The process has continuous sample paths. The main result about the limit process is an expression for its pre-generator as a formal second-order differential operator in a polynomial algebra. Bibliography: 29 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berele and B. Tenner, “Doubly symmetric functions” (2009), arXiv:0903.5306v1[math.C0].

  2. A. Borodin, “Multiplicative central measures on the Schur graph,” J. Math. Sci., 96, No. 5, 3472–3477 (1999).

    Article  MathSciNet  Google Scholar 

  3. A. Borodin and G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions,” Probab. Theory Related Fields, 144, No. 1, 281–318 (2009), arXiv:0706.1034v2[math.PR].

    Article  MATH  MathSciNet  Google Scholar 

  4. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley-Interscience, New York (1986).

    MATH  Google Scholar 

  5. W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, Berlin (1979).

    MATH  Google Scholar 

  6. J. Fulman, “Stein method and Plancherel measure of the symmetric group,” Trans. Amer. Math. Soc., 357, 555–570 (2005), arXiv:math/0305423v3[math.RT].

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Fulman, “Commutation relations and Markov chains,” Probab. Theory Related Fields, 144, No. 1, 99–136 (2009), arXiv:0712.1375v2[math.PR].

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Gnedin and G. Olshanski, “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams,” Internat. Math. Res. Notices, Art. ID 51968, 39pp. (2006), arXiv:math/0508131v2 [math.C0].

  9. P. N. Hoffman and J. F. Humphreys, Projective Representations of the Symmetric Groups, Oxford Univ. Press, New York (1992).

    MATH  Google Scholar 

  10. V. N. Ivanov, “The dimension of skew shifted young diagrams, and projective characters of the infinite symmetric group,” J. Math. Sci., 96, No. 5, 3517–3530 (1999).

    Article  MathSciNet  Google Scholar 

  11. S. Kerov, “Anisotropic Young diagrams and Jack symmetric functions,” Funct. Anal. Appl., 34, No. 1, 41–51 (2000), arXiv:math/9712267v1[math.C0].

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kerov, A. Okounkov, and G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities,” Internat. Math. Res. Notices, 4, 173–199 (1998), arXiv:q-alg/9703037v1.

    Article  MathSciNet  Google Scholar 

  13. S. Kerov, G. Olshanski, and A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation,” C. R. Acad. Sci. Paris Sér. I, 316, 773–778 (1993).

    MATH  MathSciNet  Google Scholar 

  14. S. Kerov, G. Olshanski, and A. Vershik, “Harmonic analysis on the infinite symmetric group,” Invent. Math., 158, No. 3, 551–642 (2004), arXiv:math.RT/0312270.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Kerov and A. Vershik, “The Grothendieck group of the infinite symmetric group and symmetric functions with the elements of the K 0-functor theory of AF-algebras,” in: Representations of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York (1990), pp. 36–114.

  16. J. F. C. Kingman, “Random partitions in population genetics,” Proc. Roy. Soc. London Ser. A, 361, 1–20 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  17. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, New York (1995).

    MATH  Google Scholar 

  18. M. Nazarov, “Projective representations of the infinite symmetric group,” in: A. M. Vershik (ed.), Representation Theory and Dynamical Systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, Rhode Island (1992), pp. 115–130.

    Google Scholar 

  19. G. Olshanski, “Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter” (2009), arXiv:0902.3395v1[math.PR].

  20. L. Petrov, “Two-parameter family of infinite-dimensional diffusions on the Kingman simplex,” Funct. Anal. Appl., 43, No. 4, 279–296 (2009), arXiv:0708.1930v3[math.PR].

    Article  MATH  Google Scholar 

  21. L. Petrov, “Random walks on strict partitions” (2009), arXiv:0904.1823v1[math.PR].

  22. J. Pitman, “The two-parameter generalization of Ewens random partition structure,” Tech. Rep. 345, Dept. Statistics, U. C. Berkeley (1992), http://www.stat.berkeley.edu/teh-reports/.

  23. J. Pitman, Combinatorial Stochastic Processes, École d’Été de Probabilités de Saint-Flour XXXII, 2002, Lect. Notes Math., 1875, Springer-Verlag, Berlin (2006), http://works.bepress.om/jimpitman/1.

  24. I. Schur, “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen,” J. Reine Angew. Math., 139, 155–250 (1911).

    MATH  Google Scholar 

  25. J. Stembridge, “A characterization of super symmetric polynomials,” J. Algebra, 95, 439–444 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Stembridge, “Shifted tableaux and the projective representations of symmetric groups,” Adv. Math., 74, 87–134 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Stembridge, “On Schur's Q-functions and the primitive idempotents of a commutative Hecke algebra,” J. Algebraic Combin.,1, 71–95 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetricshen Gruppe,” Math. Z., 85, 40–61 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  29. H. F. Trotter, “Approximation of semigroups of operators,” Pacific J. Math., 8, 887–919 (1958).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Petrov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 373, 2009, pp. 226–272.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, L. Random walks on strict partitions. J Math Sci 168, 437–463 (2010). https://doi.org/10.1007/s10958-010-9996-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9996-8

Keywords

Navigation