Skip to main content
Log in

Calculations in exceptional groups over rings

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In the present paper, we discuss a major project whose goal is to develop theoretical background and working algorithms for calculations in exceptional Chevalley groups over commutative rings. We recall some basic facts concerning calculations in groups over fields, and indicate complications arising in the ring case. Elementary calculations as such are no longer conclusive. We describe the basics of calculations with elements of exceptional groups in their minimal representations, which allow one to reduce calculations in the group itself to calculations in subgroups of smaller rank. For all practical purposes, such calculations are much more efficient than localization methods. Bibliography: 147 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abe, “Chevalley groups over loalrings,” Tôhoku Math. J., 21, No. 3, 474–494 (1969).

    MATH  Google Scholar 

  2. E. Abe, “Coverings of twisted Chevalley groups over commutative rings,” Sci. Rep. Tokyo Kyoiku Daigaku, 13, 194–218 (1977).

    MATH  Google Scholar 

  3. E. Abe, “White head groups of Chevalley groups over polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1307 (1983).

    MATH  MathSciNet  Google Scholar 

  4. E. Abe, “White head groups of Chevalley groups over Laurent polynomial rings,” Preprint Univ. Tsukuba, 1–14 (1988).

  5. E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the Conference of Radial Theory, Sendai (1988), pp. 1–23.

  6. E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math., 83, 1–17 (1989).

    Google Scholar 

  7. E. Abe, “Automorphisms of Chevalley groups over commutative rings,” St. Petersburg Math. J., 5, No.2, 74–90 (1993).

    Google Scholar 

  8. E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms,” Contemp. Math., 184, 13–23 (1995).

    Google Scholar 

  9. E. Abe and J. Hurley, “Centers of Chevalley groups over commutative rings,” Comm. Algebra, 16, No.1, 57–74 (1988).

    MATH  MathSciNet  Google Scholar 

  10. E. Abe and J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains,” J. Algebra, 115, No. 2, 450–465 (1988).

    MATH  MathSciNet  Google Scholar 

  11. E. Abe and K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 28, No. 1, 185–198 (1976).

    MATH  MathSciNet  Google Scholar 

  12. S. I. Adian and J. Mennicke, “Bounded generation of \( {\text{S}}{{\text{L}}_n}\left( \mathbb{Z} \right) \),” Internat. J. Algebra Comput., 2, No. 4, 357–365 (1992).

    MATH  MathSciNet  Google Scholar 

  13. M. Aschbacher, “The 27-dimensional module for E6. I–IV,” Invent. Math., 89, No. 1, 159–195 (1987); J. London Math. Soc., 37, 275–293 (1988); Trans. Amer. Math. Soc., 321, 45–84 (1990); J. Algebra, 191, 23–39 (1991).

    MathSciNet  Google Scholar 

  14. M. Aschbacher, “Some multilinear forms with large isometry groups,” Geom. Dedicata, 25, No. 1–3, 417–465 (1988).

    MATH  MathSciNet  Google Scholar 

  15. J. C. Baez, “The octonions,” Bull. Amer. Math. Soc., 39, 145–205 (2002).

    MATH  MathSciNet  Google Scholar 

  16. A. Bak, “Non-abelian K-theory: the nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).

    MATH  MathSciNet  Google Scholar 

  17. A. Bak, R. Hazrat, and N. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).

    MATH  MathSciNet  Google Scholar 

  18. A. Bak and N. Vavilov, “Normality of the elementary subgroup functors,” Math. Proc. Cambridge Philos. Soc., 118, No. 1, 35–47 (1995).

    MATH  MathSciNet  Google Scholar 

  19. H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SL n (n≥3) and Sp2n (n≥2),” Inst. Hautes Études Sci. Publ. Math., No. 33, 59–137 (1967).

    MATH  MathSciNet  Google Scholar 

  20. A. Borel, “Properties and linear representations of Chevalley groups,” in: Seminar on Algebraic Groups and Related Finite Groups, Springer-Verlag, Berlin (1970), pp. 1–55.

  21. W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language,” J. Symbolic Comput., 24, No. 3–4, 235–265 (1997).

    MATH  MathSciNet  Google Scholar 

  22. E. I. Bunina, “Automorphisms of adjoint Chevalley groups of types A l , D l , E l over loalrings,” preprint, arXiv:math/0702046, 1–20 (2007).

  23. E. I. Bunina, “Automorphisms of Chevalley groups of type F4 over loalrings with 1/2,” preprint, arXiv:math/0907.5592, 1–23 (2009).

  24. D. Carter and G. Keller, “Bounded elementary generation of \( {\text{S}}{{\text{L}}_n}\left( \mathcal{O} \right) \),” Amer. J. Math., 105, 673–687 (1983).

    MATH  MathSciNet  Google Scholar 

  25. D. Carter and G. Keller, “Elementary expressions for unimodular matrices,” Comm. Algebra, 12, 379–389 (1984).

    MATH  MathSciNet  Google Scholar 

  26. R. Carter, Simple Groups of Lie Type, Wiley, London-New York-Sydney (1972).

    MATH  Google Scholar 

  27. R. W. Carter and Chen Yu, “Automorphisms of affine Kac-Moody groups and related Chevalley groups over rings,” J. Algebra, 155, 44–94 (1993).

    MATH  MathSciNet  Google Scholar 

  28. B. Chang, “Generators of Chevalley groups over \( \mathbb{Z} \),” Canad. J. Math., 38, No. 2, 387–396 (1986).

    MATH  MathSciNet  Google Scholar 

  29. Chen Yu, “Isomorphic Chevalley groups over integral domains,” Rend. Sem. Mat. Univ. Padova, 92, 231–237 (1994).

    MATH  MathSciNet  Google Scholar 

  30. Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras,” Proc. Amer. Math. Soc., 123, No. 8, 2357–2361 (1995).

    MATH  MathSciNet  Google Scholar 

  31. Chen Yu, “Automorphisms of simple Chevalley groups over \( \mathbb{Q} \)-algebras,” Tôhoku Math. J., 348, 81–97 (1995).

    Google Scholar 

  32. Chen Yu, “Isomorphisms of adjoint Chevalley groups over integral domains,” Trans. Amer. Math. Soc., 348, No. 2, 521–541 (1996)

    MATH  MathSciNet  Google Scholar 

  33. Chen Yu, “Isomorphisms of Chevalley groups over algebras,” J. Algebra, 226, 719–741 (2000).

    MATH  MathSciNet  Google Scholar 

  34. A. M. Cohen and R. H. Cushman, “Gröbner bases and standard monomial theory,” in: Computational Algebraic Geometry, Progr. Math., 109, Birkhäuser Boston, Boston (1993), pp. 41–60.

  35. A. M. Cohen, W. A. de Graaf, and L. Rónyai, “Lie algebraic computation,” Comput. Phys. Comm., 97, 53–62 (1996).

    MATH  MathSciNet  Google Scholar 

  36. A. M. Cohen, W. A. de Graaf, and L. Rónyai, “Computations in finite-dimensional Lie algebras,” Discrete Math. Theor. Comput. Sci., 1, 129–138 (1997).

    MATH  MathSciNet  Google Scholar 

  37. A. M. Cohen and S. H. Murray, “Algorithm for Lang's theorem,” arXiv:math.GR/0506068, 1–29 (2005).

    Google Scholar 

  38. A. M. Cohen, S. H. Murray, and D. E. Taylor, “Computing in groups of Lie type,” Math. Comp., 73, 1477–1498 (2004).

    MATH  MathSciNet  Google Scholar 

  39. A. M. Cohen, S. Haller, and S. H. Murray, “Computing in unipotent and reductive algebraic groups,” LMS J. Comput. Math., 11, 343–366 (2008).

    MathSciNet  Google Scholar 

  40. B. N. Cooperstein, “The fifty-six-dimensional module for E7. I. A four form for E7J. Algebra, 173, 361–389 (1995).

    MATH  MathSciNet  Google Scholar 

  41. D. L. Costa and G. E. Keller, “On the normal subgroups of G2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).

    MATH  MathSciNet  Google Scholar 

  42. J. Faulkner, “Hopf duals, algebraic groups and Jordan pairs,” J. Amer. Math. Soc., 279, No. 1, 91–120 (2004).

    MATH  MathSciNet  Google Scholar 

  43. The GAP group, Aachen and St. Andrews, GAP, Groups, Algorithms and Programming, Version 4.1 (1999), http://gap-system.org.

  44. M. Gek, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, “Chevie - a system for computing and processing generic character tables,” Appl. Algebra Engrg. Comm. Comput., 7, No. 3, 175–210 (1996).

    MathSciNet  Google Scholar 

  45. P. Gilkey and G. M. Seitz, “Some representations of exceptional Lie algebras,” Geom. Dedicata, 25, No. 1–3, 407–416 (1988).

    MATH  MathSciNet  Google Scholar 

  46. D. R. Grayson, “SK1 of an interesting principal ideal domain,” J. Pure Appl. Algebra, 20, 157–163 (1981).

    MATH  MathSciNet  Google Scholar 

  47. R. I. Griess, “A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables,” J. Algebra, 131, 281–293 (1990).

    MATH  MathSciNet  Google Scholar 

  48. S. Haller, “Computing Galois cohomology and forms of linear algebraic groups,” 1–91 (2005).

  49. R. Hazrat, “Dimension theory and non-stable K1 of quadratic module,” K-theory, 27, 293–327 (2002).

    MATH  MathSciNet  Google Scholar 

  50. R. Hazrat, V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” 1–13, submitted to J. K-Theory (2009).

  51. R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).

    MATH  MathSciNet  Google Scholar 

  52. R. Hazrat and N. Vavilov, “Bak's work on K-theory of rings (with an appendix by Max Karoubi),” J. K-Theory, 4, No. 1, 1–65 (2009).

    MATH  MathSciNet  Google Scholar 

  53. R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Relative standard commutator formula: the case of Chevalley groups,” J. Pure Appl. Algebra (2010), to appear.

  54. D. Holt, B. Eick, and E. A. O'Brien, Handbook of Computational Group Theory, Chapman & Hall, Boca Raton (2005).

    MATH  Google Scholar 

  55. R. B. Howlett, L. J. Rylands, and D. E. Taylor, “Matrix generators for exceptional groups of Lie type,” J. Symbolic Comput., 4, 429–445 (2001).

    MathSciNet  Google Scholar 

  56. F. Ischebeck, “Hauptidealringe mit nichttrivialer SK1-Gruppe,” Arch. Math., 35, 138–139 (1980).

    MATH  MathSciNet  Google Scholar 

  57. J. C. Jantzen, Representations of Algebraic Groups, Academic Press, New York (1987).

    MATH  Google Scholar 

  58. W. van der Kallen, “Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977).

    MathSciNet  Google Scholar 

  59. W. van der Kallen, “\( {\text{S}}{{\text{L}}_3}\left( {\mathbb{C}\left[ x \right]} \right) \) does not have bounded word length,” Lecture Notes Math., 966, 357–361 (1982).

    Google Scholar 

  60. W. van der Kallen and M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings,” Math. Z., 155, 83–94 (1977).

    MATH  MathSciNet  Google Scholar 

  61. V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring,” Math. USSR Sbornik, 34, 655–669 (1978).

    Google Scholar 

  62. B. Kostant, “Groups over \( \mathbb{Z} \),” in: Algebraic Groups and Discontinous Subgroups, Proc. Symp. Pure Math., 9 (1966), pp. 90–98.

  63. M. A. A. van Leeuwen, A. M. Cohen, and B. Lisser, LiE Manual, l CWI/CAN, Amsterdam (1992); http://young.sp2mi.univ-poitiers.fr/mar/Lie.

  64. H. W. Lenstra, “Grothendieck groups of Abelian group rings,” J. Pure Appl. Algebra, 20, 173–193 (1981).

    MATH  MathSciNet  Google Scholar 

  65. W. Lihtenstein, “A system of quadrics describing the orbit of the highest weight vector,” Proc. Amer. Math. Soc., 84, No. 4, 605–608 (1982).

    MathSciNet  Google Scholar 

  66. O. Loos, “On algebraic groups defined by Jordan pairs,” J. Amer. Math. Soc., 74, 23–66 (1979).

    MATH  MathSciNet  Google Scholar 

  67. J. Lurie, “On simply laced Lie algebras and their minuscule representations,” Comment. Math. Helv., 166, 515–575 (2001).

    MathSciNet  Google Scholar 

  68. A. Yu. Luzgarev, “On over groups of E(E6, R) and E(E7, R) in their minimal representations,” J. Math. Sci., 319, 216–243 (2004).

    MATH  MathSciNet  Google Scholar 

  69. A. Yu. Luzgarev, “Over groups of F 4 in E 6,” St. Petersburg Math. J., 20, No. 6, 148–185 (2008).

    MathSciNet  Google Scholar 

  70. A. Yu. Luzgarev, “Characteristic free quartic invariants for G(E 7, R),” Russian Acad. Sci. Dokl. Math. (2010), toappear.

  71. A. Yu. Luzgarev, “Equations defining the highest weight orbit in the adjoint representation,” St. Petersburg Math. J. (2009), toappear.

  72. A. Luzgarev, V. Petrov, and N. Vavilov, “Explicit equations on orbit of the highest weight vector” (2009), to appear.

  73. H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup. (4), 2, 1–62 (1969).

    Google Scholar 

  74. J. S. Milne, “Algebraic groups and arithmetic groups,” http://www.jmilne.org/math/, 1–219 (2006).

  75. J. S. Milne, “Semisimple Lie algebras, algebraic groups and tensor categories,” http://www.jmilne.org/math/, 1–37(2007).

  76. I. Mirković and K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings,” Ann. Math., 165, No. 1, 1–49 (2007).

    Google Scholar 

  77. D. W. Morris, “Bounded generation of SL(n, A) (after D. Carter, G. Keller, and E. Paige),” New York J. Math., 13, 383–421 (2007).

    MATH  MathSciNet  Google Scholar 

  78. S. Nikolenko and N. Semenov, “Chow ring structure made simple,” arXiv:math.AG/0606335, 1–17 (2006).

    Google Scholar 

  79. S. Nikolenko, N. Semenov, and K. Zainoulline, “Motividc decomposition of anisotropic varieties of type F4 into generalised Rost motives,” J. K-Theory, 1–17 (2009), to appear.

  80. H. Park and C. Woodburn, “An algorithmic proof of Suslin's stability theorem for polynomial rings,” J. Algebra, 178, No. 1, 277–298 (1995).

    MATH  MathSciNet  Google Scholar 

  81. V. A. Petrov and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups,” St. Petersburg Math. J., 20, No. 4, 160–188 (2008).

    MathSciNet  Google Scholar 

  82. V. Petrov and A. Stavrova, “Tits indices over semilocal rings,” J. Algebra, 1–25 (2010), to appear.

  83. V. Petrov and A. Stavrova, “Jordan-Kantor pairs and algebraic groups,” J. Algebra (2010), to appear.

  84. V. Petrov and A. Stavrova, “Reductive groups as automorphism groups of algebraic structures: a unified approach” (2010), to appear.

  85. I. M. Pevzner, “Root elements in exeptional groups,” Ph. D. Thesis. St. Petesburg State University, 1–149 (2008).

  86. I. M. Pevzner, “Geometry of root elements in groups of type E6,” Preprint POMI, No. 12, 1–37 (2008).

  87. I. M. Pevzner, “The width of groups of type E6 with respect to root elements, I,” Preprint POMI, No. 13, 1–40 (2008).

  88. E. B. Plotkin, “Surjective stability of K1-functor for some exceptional Chevalley groups,” J. Soviet Math., 198, 65–88 (1991).

    MATH  MathSciNet  Google Scholar 

  89. E. Plotkin, “Stability theorems for K1-functors for Chevalley groups,” in: Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge (1991), pp. 203–217.

  90. E. Plotkin, “On the stability of K1-functor for Chevalley groups of type E7,” J. Algebra, 210, 67–85 (1998).

    MATH  MathSciNet  Google Scholar 

  91. E. Plotkin, A. Semenov, and N. Vavilov, “Visual basic representations: an atlas,” Internat. J. Algebra Comput., 8, No. 1, 61–95 (1998).

    MATH  MathSciNet  Google Scholar 

  92. E. B. Plotkin, M. R. Stein, and N. A. Vavilov, “Stability of K-functors modeled on Chevalley groups, revisited," to appear.

  93. A. J. E. Ryba, “Construction of some irreducible subgroups of E8 and E6,” LMS J. Comput. Math., 10, 329–340 (2007).

    MathSciNet  Google Scholar 

  94. A. J. E. Ryba, “Identifation of matrix generators of a Chevalley group,” J. Algebra, 309, 484–496 (2007).

    MATH  MathSciNet  Google Scholar 

  95. N. Semenov, “Motivic constrution of cohomological invariants,” 1–30 (2008), to appear.

  96. C. S. Seshadri, “Geometry of G/P. I. Standard monomial theory for minuscule representations,” in: C. P. Ramanujam: A Tribute, Tata Press, Bombay (1978), pp. 207–239.

  97. A. Sivatsky and A. Stepanov, “On the word length of commutators in GL n (R),” K-theory, 17, 295–302 (1999).

    MathSciNet  Google Scholar 

  98. Y. Shalom, “Bounded generation and Kazhdan property (T),” Inst. Hautes Études Sci. Publ. Math., 90, 145–168 (1999).

    MATH  MathSciNet  Google Scholar 

  99. Ch. Soulé, “Chevalley groups over polynomial rings,” in: Homological Group Theory (Durham, 1977), London Math. Soc. Lecture Notes Ser., 36, Cambridge Univ. Press, Cambridge-New York (1979), pp. 359–367.

  100. S. Splitthof, “Finite presentability of Steinberg groups and related Chevalley groups,” Contemp. Math., 55, 635–687 (1986).

    Google Scholar 

  101. T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups, Springer, Berlin (2000).

    MATH  Google Scholar 

  102. A. Stavrova, “Normal struture of maximal parabolic subgroups in Chevalley groups over commutative rings,” Algebra Colloq., 16, No. 4, 631–648 (2009).

  103. A. Stavrova, “Struture of isotropic redutive groups,” Ph. D. Thesis, St. Petesburg State University (2009).

  104. M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).

    MATH  MathSciNet  Google Scholar 

  105. M. R. Stein, “The Shur multipliers of \( {\text{S}}{{\text{p}}_6}\left( \mathbb{Z} \right),\,{\text{Spi}}{{\text{n}}_8}\left( \mathbb{Z} \right),\,{\text{Spi}}{{\text{n}}_7}\left( \mathbb{Z} \right) \), and \( {{\text{F}}_4}\left( \mathbb{Z} \right) \),” Math. Ann., 215, 165–172 (1975).

    MATH  MathSciNet  Google Scholar 

  106. M. R. Stein, “Stability theorems for K1, K2 and related functors modeled on Chevalley groups,”Japan J. Math., 4, No. 1, 77–108 (1978).

    MathSciNet  Google Scholar 

  107. R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques,” in: Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Gauthier-Villars, Paris (1962), pp. 113–127.

  108. R. Steinberg, Lectures on Chevalley Groups, Yale Univ., New Haven (1968).

    Google Scholar 

  109. R. Steinberg, “Generators, relations and coverings of algebraic groups. II,” J. Algebra, 71, 527–543 (1981).

    MATH  MathSciNet  Google Scholar 

  110. R. Steinberg, “Some consequences of elementary relations of SL n ,” Contemp. Math., 45, 335–350 (1985).

    MathSciNet  Google Scholar 

  111. A. Stepanov, “Free product subgroups between Chevalley groups G(Φ, F) and G(Φ, F[t]),” J. Algebra (2010), to appear.

  112. A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).

    MATH  MathSciNet  Google Scholar 

  113. A. Stepanov and N. Vavilov, “On the length of commutators in Chevalley groups,” submitted to Israel J. Math.

  114. A. A. Suslin, “The struture of the special linear group over polynomial rings,” Izv. Akad. Nauk SSSR Ser. Mat., 11, No. 2, 235–253 (1977).

    MathSciNet  Google Scholar 

  115. A. A. Suslin and V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” J. Sov. Math., 20, No. 6, 2665–2691 (1982).

    MATH  Google Scholar 

  116. K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings,” J. Algebra, 175, No. 3, 526–536 (1995).

    MATH  MathSciNet  Google Scholar 

  117. G. Taddei, “Shémas de Chevalley-Demazure, fonctions représentatives et théoréme de normalité,” Thèse, Univ. de Genève, 1–58 (1985).

  118. G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55, 693–710 (1986).

    MathSciNet  Google Scholar 

  119. O. I. Tavgen, “Finite width of arithmetic subgroups of Chevalley groups of rank ≥ 2,” Soviet Math. Dokl., 41, No. 1, 136–140 (1990).

    MATH  MathSciNet  Google Scholar 

  120. O. I. Tavgen, “Bounded generation of Chevalley groups over rings of S-integer algebraic numbers,” Izv. Akad. Nauk SSSR Ser. Mat., 54, No. 1, 97–122 (1990).

    MATH  Google Scholar 

  121. O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of S-integers,” Contemp. Math., 131, No. 1, 409–421 (1992).

    MathSciNet  Google Scholar 

  122. D. M. Testerman, “A construction of certain maximal subgroups of the algebraic groups E6 and F4,” Comm. Algebra, 17, No. 4, 1003–1016 (1989).

    MATH  MathSciNet  Google Scholar 

  123. M. S. Tulenbaev, “Schur multiplier of the group of elementary matrices of finite order,” J. Sov. Math., 17, No. 4 (1981).

    Google Scholar 

  124. L. N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).

    MathSciNet  Google Scholar 

  125. N. Vavilov, “Struture of Chevalley groups over commutative rings,” in: Nonassoiative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., River Edge (1991), pp. 219–335.

  126. N. Vavilov, “A third look at weight diagrams,” Rend. Sem. Mat. Univ. Padova, 204, 1–45 (2000).

    MathSciNet  Google Scholar 

  127. N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type E l ,” J. Math. Sci., 120, 1513–1548 (2004).

    MathSciNet  Google Scholar 

  128. N. A. Vavilov, “Can one see the signs of the structure constants?,” St. Petersburg Math. J., 19, No. 4, 34–68 (2007).

    MathSciNet  Google Scholar 

  129. N. A. Vavilov, “Calculations in exceptional groups,” Vestnik Samara Univ. Natural Sciences, No. 7, 11–24 (2007).

  130. N. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7,” Internat J. Algebra Comput.,17, No. 5–6, 1283–1298 (2007).

    MATH  MathSciNet  Google Scholar 

  131. N. A. Vavilov, “Numerology of square equations,” St. Petersburg Math. J., 20, No. 4, 9–40 (2008).

    Google Scholar 

  132. N. A. Vavilov, “An A3-proof of structure theorems for Chevalley groups of types E6 and E7. II. The principal lemma,” St. Petersburg Math. J. (2010), to appear.

  133. N. A. Vavilov and M. R. Gavrilovich, “An A2-proof of the structure theorems for Chevalley groups of types E6 and E7,” St. Petersburg Math. J., 16, No. 4, 649–672 (2005).

    MathSciNet  Google Scholar 

  134. N. A. Vavilov, M. R. Gavrilovich, and S. I. Nikolenko, “Structure of Chevalley groups: the Proof from the Book,” J. Math. Sci., 330, 36–76 (2006).

    MATH  MathSciNet  Google Scholar 

  135. N. A. Vavilov and V. G. Kazakevich, “Yet another variation of decomposition on transvections,” Vestnik St. Petersburg Univ. Math., 41, No. 4, 345–347 (2008).

    MATH  MathSciNet  Google Scholar 

  136. N. A. Vavilov and A. Yu. Luzgarev, “Normaliser of Chevalley groups of type E6,” St. Petersburg Math. J., 19, No. 5, 35–62 (2007).

    MathSciNet  Google Scholar 

  137. N. A. Vavilov and A. Yu. Luzgarev, “Normaliser of Chevalley groups of type E7,” St. Petersburg Math. J. (2010), to appear.

  138. N. A. Vavilov and A. Yu. Luzgarev, “Chevalley group of type E7 in the 56-dimensional representation,” J. Math. Sci. (2010), to appear.

  139. N. A. Vavilov and A. Yu. Luzgarev, “An A2-proof of the structure theorems for Chevalley groups of type E8,” St. Petersburg Math. J. (2010), to appear.

  140. N. A. Vavilov, A. Yu. Luzgarev, and I. M. Pevzner, “Chevalley group of type E6 in the 27-dimensional representation,” J. Math. Sci., 338, 5–68 (2006).

    MATH  MathSciNet  Google Scholar 

  141. N. A. Vavilov and S. I. Nikolenko, “An A2-proof of the structure theorems for Chevalley groups of type F4,” St. Petersburg Math. J., 20, No. 4, 27–63 (2008).

    MathSciNet  Google Scholar 

  142. N. Vavilov and E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Appl. Math., 45, No. 1, 73–113 (1996).

    MATH  MathSciNet  Google Scholar 

  143. N. A. Vavilov, E. B. Plotkin, and A. V. Stepanov, “Calculations in Chevalley groups over commutative rings,” Soviet Math. Dokl., 40, No. 1, 145–147 (1990).

    MathSciNet  Google Scholar 

  144. N. A. Vavilov and A. K. Stavrova, “Basic reductions in the description of normal subgroups,” J. Math. Sci., 151, No. 3, 2949–2960 (2008).

    Google Scholar 

  145. N. A. Vavilov and A. V. Stepanov, “Over groups of semisimple subgroups,” Vestnik Samara Univ. Natural Sciences, No. 3(62), 51–94 (2008).

  146. W. C. Waterhouse, Introduction to Affine Group Schemes, Springer-Verlag ,New York-Berlin (1979).

    MATH  Google Scholar 

  147. N. J. Wildberger, “A combinatorial construction for simply-laced Lie algebras,” Adv. in Appl. Math., 30, 385–396 (2003).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Luzgarev.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 373, 2009, pp. 48–72.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzgarev, A., Stepanov, A. & Vavilov, N. Calculations in exceptional groups over rings. J Math Sci 168, 334–348 (2010). https://doi.org/10.1007/s10958-010-9984-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9984-z

Keywords

Navigation