Skip to main content
Log in

Vincent’s theorem of 1836: overview and future research

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

In this paper, we present two different versions of Vincent’s theorem of 1836 and discuss various real root isolation methods derived from them: one using continued fractions and two using bisections, the former being the fastest real root isolation method. Regarding the continued fractions method, we first show how, using a recently developed quadratic complexity bound on the values of the positive roots of polynomials, its performance has been improved by an average of 40% over its initial implementation, and then we indicate directions for future research. Bibliography: 45 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Akritas, “Vincent's theorem in algebraic manipulation,” Ph. D. thesis, North Carolina State University, Raleigh (1978).

  2. A. G. Akritas, “An implementation of Vincent's Theorem,” Numer. Math., 36, 53–62 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. G. Akritas, “The fastest exact algorithms for the isolation of the real roots of a polynomial equation,” Computing, 24, 299–313 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. G. Akritas, “Reflections on a pair of theorems by Budan and Fourier,” Math. Mag., 55, No.5, 292–298 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. G. Akritas, “There is no ‘Uspensky's method’, "in: Proceedings of the 1986 Symposium on Symbolic and Algebraic Computation, Waterloo, Ontario, Canada (1986), pp. 88–90.

  6. A. G. Akritas, Elements of Computer Algebra with Applications, John Wiley Interscience, New York (1989).

    MATH  Google Scholar 

  7. A. G. Akritas, “There is no ‘Descartes’ method’, “in: M. J. Wester and M. Beaudin (eds.), Computer Algebra in Education, Aulona Press, White Lake (2008), pp. 19–35.

    Google Scholar 

  8. A. G. Akritas, “Linear and quadratic complexity bounds on the values of the positive roots of polynomials,” submitted.

  9. A. G. Akritas, A. I. Argyris, and A. W. Strzeboński, “FLQ, the fastest quadratic complexity bound on the values of positive roots of polynomials,” Serdica J. Comput., 2, 145–162 (2008).

    MATH  MathSciNet  Google Scholar 

  10. A. G. Akritas, A. Bocharov, and A. W. Strzeboński, “Implementation of real root isolation algorithms in Mathematica,” in: Abstracts of the International Conference on Interval and Computer-Algebraic Methods in Science and Engineering (Interval'94), St. Petersburg, Russia (1994), pp. 23–27.

  11. A. G. Akritas and S. D. Danielopoulos, “On the forgotten theorem of Mr. Vincent,” Historia Math., 5, 427–435 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. G. Akritas and S. D. Danielopoulos, “An unknown theorem for the isolation of the roots of polynomials,” Ganita-Bharati (Bulletin of the Indian Society for History of Mathematics), 2, 41–49 (1980).

    MATH  MathSciNet  Google Scholar 

  13. A. G. Akritas and K. H. Ng, “Exact algorithms for polynomial real root approximation using continued fractions,” Computing, 30, 63–76 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. G. Akritas and A. Strzeboński, “A comparative study of two real root isolation methods,” Nonlinear Anal. Model. Control, 10, No. 4, 297–304 (2005).

    MATH  MathSciNet  Google Scholar 

  15. A. G. Akritas and P. Vigklas, “A comparison of various methods for computing bounds for positive roots of polynomials,” J. Univ. Comput. Sci., 13, No. 4, 455–467 (2007).

    MathSciNet  Google Scholar 

  16. A. G. Akritas, A. Strzeboński, and P. Vigklas, “Implementations of a new theorem for computing bounds for positive roots of polynomials,” Computing, 78, 355–367 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. G. Akritas, A. Strzeboński, and P. Vigklas, “Advance son the continued fractions method using better estimations of positive root bounds,” in: V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov (eds.), Proceedings of the 10th International Workshop on Computer Algebra in Scientific Computing (CASC), Bonn, September 16–20, 2007, Lect. Notes Comput. Sci., 4770, Springer-Verlag, Berlin (2007), pp. 24–30.

  18. A. G. Akritas, A. Strzeboński, and P. Vigklas, “On the various bisection methods derived from Vincent's theorem,” Serdica J. Comput., 2, 89–104 (2008).

    MATH  MathSciNet  Google Scholar 

  19. A. G. Akritas, A. Strzeboński, and P. Vigklas, “Improving the performance of the continued fractions method using new bounds of positive roots,” Nonlinear Anal. Model. Control 13, No. 3, 265–279 (2008).

    MATH  MathSciNet  Google Scholar 

  20. A. Alesina and M. Galuzzi, “A new proof of Vincent's theorem,” Enseign. Math., 44, 219–256 (1998).

    MATH  MathSciNet  Google Scholar 

  21. A. Alesina and M. Galuzzi, “Addentum to the paper ‘A new proof of Vincent's theorem’, “Enseign. Math., 45, 379–380 (1999).

    MathSciNet  Google Scholar 

  22. A. Alesina and M. Galuzzi, “Vincent's theorem from a modern point of view,” in: R. Betti and W. F. Lawvere (eds.), Categorical Studies in Italy (Perugia, 1997), Rend. Circ. Mat. Palermo, Serie II, 64 (2000), pp. 179–191.

  23. E. Bombieri and A. J. van der Poorten, “Continued fractions of algebraic numbers,” in: Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., 325, Kluwer Academic Publishers, Dordrecht (1995), pp. 137–152.

  24. F. Boulier, “Systèmes polynomiaux: que signife “résoudre”?, “Lecture notes, Universitné Lille 1 (2007); http://www2.lifl.fr/∼boulier/RESOUDRE/SHARED/support.pdf; http://www.fil.univ-lille1.fr/portail/ls4/resoudre.

  25. F. Boulier, Private communiation, Otober 2007.

  26. D. G. Cantor, P. H. Galyean, and H. G. Zimmer, “A continued fraction algorithm for real algebraic numbers,” Math. Comput., 26, No. 119, 785–791 (1972).

    MATH  MathSciNet  Google Scholar 

  27. G. E. Collins and A. G. Akritas, “Polynomial real root isolation using Desartes' rule of signs,” in: Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computations, Yorktown Heights, New York (1976), pp. 272–275.

  28. H. Hong, “Bounds for absolute positiveness of multivariate polynomials,” J. Symbolic Comput., 25, No. 5, 785–791 (1998).

    Google Scholar 

  29. J. von zur Gathen and J. Gerhard, “Fast algorithms for Taylor shifts and certain difference equations,” in: Proceedings of ISSAC'97, Maui, Hawaii (1997), pp. 40–47.

  30. B. Kioustelidis, “Bounds for positive roots of polynomials,” J. Comput. Appl. Math., 16, No. 2, 241–244 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  31. E. K. Lloyd, “On the forgotten Mr. Vincent,” Historia Math., 6, 448–450 (1979).

    Article  MathSciNet  Google Scholar 

  32. N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin (1963). [For an English translation of a book with similar content, see: N. Obreschkoff, Zeros of Polynomials, Bulgarian Academic Monographs, 7, Sofia (2003).]

  33. A. M. Ostrowski, “Note on Vincent's theorem,” Ann. Math., Ser 2., 52, No. 3, 702–707 (1950).

    Article  MathSciNet  Google Scholar 

  34. F. Rouillier and P. Zimmermann, “Efficient isolation of polynomial's real roots,” J. Comput. Appl. Math., 162, 33–50 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  35. J.-A. Serret, Cours d'Algèbre Supérieure, Vol. 1, 2, Gauthier-Villars, Paris (1866). Copies of these volumes can be downloaded from http://www.archive.org/details/coursdalgebsuper01serrrcih.

  36. V. Sharma, “Complexity of real root isolation using continued fractions,” ISAAC'07 Preprint (2007)

  37. V. Sharma, “Complexity analysis of algorithms in algebraic computation,” Ph. D. thesis, Department of Computer Science, Courant Institute of Mathematical Science, New York University (2007).

  38. D. Ştefănescu, “New bounds for positive roots of polynomials,” J. Univ. Comput. Sci., 11, No. 12, 2132–2141 (2005).

    Google Scholar 

  39. D. Ştefănescu, “Bounds for real roots and applications to orthogonal polynomials,” in: V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov (eds.), Proceedings of the 10th International Workshop on Computer Algebra in Scientific Computing (CASC 2007), Bonn, September 16–20, 2007, Lect. Notes Comput. Sci., 4770, Springer-Verlag, Berlin-Heidelberg (2007), pp. 377–391.

  40. K. Thull, “Approximation by continued fraction of apolynomial rea lroot,” in: Proceedings of the 1984 ACM Symposium on Symbolic and Algebraic Computations, Lect. Notes Comput. Sci., 174 (1984), pp. 367–377.

  41. E. P. Tsigaridas and I. Z. Emiris, “Univariate polynomial real root isolation: Continued fractions revisited,” in: Y. Azar and T. Erlebah (eds.), Proceedings of the ESA 2006, Lect. Notes Comput. Sci., 4168 (2006), pp. 817–828.

  42. J. V. Uspensky, Theory of Equations, MGraw-Hill, New York (1948).

    Google Scholar 

  43. A. Yu. Uteshev, Private communiation, September 2007.

  44. A. J. H. Vincent, “Sur la resolution des équations numériques,” Journal de Mathématiques Pures et Appliquées, 1, 341–372 (1836).

    Google Scholar 

  45. C. K. Yap, Fundamental Problems of Algorithmic Algebra, Oxford Univ. Press, New York (2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Akritas.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 373, 2009, pp. 5–33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akritas, A.G. Vincent’s theorem of 1836: overview and future research. J Math Sci 168, 309–325 (2010). https://doi.org/10.1007/s10958-010-9982-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9982-1

Keywords

Navigation