Skip to main content
Log in

Asymptotic modeling of the problem with contrasting stiffness

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

An asymptotic model is found for the Neumann problem for the second-order differential equation with piecewise constant coefficients in a composite domain Ω∪ω, which are small, of order ε, in the subdomain ω. Namely, a domain Ω(ε) with a singular perturbed boundary is constructed, the solution for which provides a two-term asymptotic, that is, of increased accuracy O(ε2| log ε|3/2), approximation to the restriction to Ω of the solution of the original problem. As opposed to other singularly perturbed problems, in the case of contrasting stiffness, the modeling requires the construction of a contour ∂Ω(ε) with ledges, i.e., with boundary fragments of curvature O(ε−1). Bibliography: 33 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Ladyzhenskaya, Boundary Value Problems in Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  3. J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Heidelberg (1989).

    MATH  Google Scholar 

  4. S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations,” Mat. Sb., 181, No. 3, 291–320 (1990).

    Google Scholar 

  5. S. A. Nazarov, “Boundary layers and conditions of pivoted resting for thin plates,” Zap. Nauchn. Semin. POMI, 257, 228–287 (1999).

    Google Scholar 

  6. S. A. Nazarov, “Asymptotics of the solution and modeling of the Dirichlet problem in a corner domain with a fast oscillating boundary,” Algebra Analiz, 19, No. 2, 183–225(2007).

    Google Scholar 

  7. S. A. Nazarov, “Asymptotics of solutions and modeling of problems in elasticity theory in a domain with a fast oscillating boundary,” Izv. Ross. Akad. Nauk, Ser. Mat., 72, No. 3, 103–158 (2008).

    MathSciNet  Google Scholar 

  8. Yu. N. Rabotnov, Mechanics of Deformed Solids [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  9. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Verlag, Berlin (1992).

    MATH  Google Scholar 

  10. A. M. Il'in, “The boundary value problem for the elliptic equation of the second order in a domain with a narrow crack. II. A domain with a small opening,” Mat. Sb., 103, No. 2, 265–284 (1977).

    MathSciNet  Google Scholar 

  11. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, “On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain,” Probl. Mat. Anal., 8, 72–153 (1981).

    MATH  MathSciNet  Google Scholar 

  12. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, “Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings,” Izv. Akad. Nauk SSSR, Ser. Mat., 48, No. 2, 347–371 (1984).

    MathSciNet  Google Scholar 

  13. V. G. Maz'ya and S. A. Nazarov, “Asymptotics of energy integrals for a small perturbations of the boundary in the vicinity of corner and conic points,” Trudy Mosc. Mat. Obshch., 50, 79–129(1987).

    MATH  Google Scholar 

  14. V. G. Maz'ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotics of Solutions to Elliptic Boundary-Value Problems under a Singular Perturbation of the Domain [in Russian], Tbilisi (1981).

  15. W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, 1, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  16. A. M. Il'in, Agreement of Asymptotic Expansions of Solutions of Boundary Value Problems [in Russian], Nauka, Moscow(1989).

  17. J. Sokolowski and A. Zohowski, “On topological derivative in shape optimization,” SIAM J. Contr. Optim., 37, No. 4, 1251–1272 (1999).

    Article  MATH  Google Scholar 

  18. S. A. Nazarov and Ya. Sokolowski, “The topological derivative of the Dirichlet integral when a thin ligament is formed,” Sib. Mat. J., 45, No. 2, 410–425 (2004).

    MATH  MathSciNet  Google Scholar 

  19. S. A. Nazarov, A. S. Slutskij, and Ya. Sokolowski, “Topological derivative of the energy functional due to formation of a thin ligament on a spatial body,” Folia Math., 12, No. 1, 39–72 (2005).

    MATH  MathSciNet  Google Scholar 

  20. J. T. Beale, “Scattering frequencies of resonators,” Commun. Pure Appl. Math., 26, No. 4, 549–563 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  21. Sh. Jimbo, “The singularly perturbed domain and characterization for the eigenfunctions with Neumann boundary condition,” J. Differ. Equat., 77, No. 2, 322–350 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  22. P. P. Gadylshin, “On eigenvalues of a bumb-bell figure with a handle,” Izv. RAN, Ser. Mat., 69, No. 2, 45–110 (2005).

    MathSciNet  Google Scholar 

  23. S. A. Nazarov and Ya. Sokolowski, “Asymptotic analysis of shape functionals,” J. Math. Pures Appl., 82, No. 2, 125–196 (2003).

    MATH  MathSciNet  Google Scholar 

  24. M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, SIAM Ser. Adv. Design Control, Philadelphia (2001).

    MATH  Google Scholar 

  25. S. A. Nazarov and M. V. Olyushin, “On perturbations of eigenvalues of the Neumann problem a used by a variation of the boundary of the domain,” Algebra Analiz, 5, No. 2, 169–188 (1993).

    MathSciNet  Google Scholar 

  26. M. Van Dyke, Perturbation Methods in Fluids Mechanics [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  27. S. A. Nazarov, “Asymptotic conditions at points, self-adjoint extensions of operators, and the method of joined asymptotic expansions,” Trudy St. Petersburg Mat. Obshch., 5, 112–183 (1996).

    Google Scholar 

  28. V. I. Smirnov, A Course in Higher Mathematics [in Russian], Vol. 2, Nauka, Moscow (1967).

    Google Scholar 

  29. V. A. Kondratiev, “Boundary-value problems for elliptic equations in domains with conic or corner points,” Trudy Moskov. Mat. Obshch., 16, 209–292 (1967).

    Google Scholar 

  30. V. G. Maz'ya and B. A. Plamenevskii, “On coefficients in asymptotics of solutions of elliptic boundary value problems in a domain with conic points,” Math. Nachr., 76, 29–60 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  31. V. G. Maz'ya and B. A. Plamenevskii, “Estimates in L p and in the Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary-vakue problems in domains with singular points on the boundary,” Math. Nachr., 77, 25–82 (1977).

    Google Scholar 

  32. S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Bourdaries [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  33. S. A. Nazarov and Yu. A. Romashev, “Variation of the intensity coefficient as the ligament between two collinear cracks fails,” Izv. AN Arm. SSR, Ser. Mekh., No. 4, 30–40 (1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 369, 2009, pp. 164–201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Asymptotic modeling of the problem with contrasting stiffness. J Math Sci 167, 692–712 (2010). https://doi.org/10.1007/s10958-010-9955-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9955-4

Keywords

Navigation