Skip to main content
Log in

Spectral properties of combined media

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper contains a survey of some results related to the theory of strongly inhomogeneous media and also new results on the description of finite volume eigen-oscillation spectra whose dynamics is described by effective (averaged) models of such media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, “To the theory of seismic and self-electric phenomena in humid soil,” Izv. AN SSSR, Ser. Geograph. Geofiz. (1944).

  2. M. A. Biot, “Generalized theory of acoustic propagation in porous dissipative media,” J. Acoust. Soc. Amer., 34, 1254–1264 (1962).

    Article  MathSciNet  Google Scholar 

  3. E. Sanches-Palincia, Inhomogeneous Media and the Oscillation Theory [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  4. G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization,” SIAM J. Math. Anal., 20, No. 3, 608–623 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Nguetseng, “Asymptotic analysis for a staff variational problem arising in mathematics,” SIAM J. Math. Anal., 21, No. 6, 1396–1414 (1990).

    Article  MathSciNet  Google Scholar 

  6. V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Averaging of Differential Operators [in Russian], Fizmatlit, Moscow (1993).

    Google Scholar 

  7. O. A. Oleinik, G. A. Iosif’yun, and A. S. Shamaev, Mathematical Problems of Strongly Inhomogeneous Elastic Media [in Russian], MGU, Moscow (1990).

    Google Scholar 

  8. N. S. Bakhvalov and G. P. Panasenko, Averaging the Processes in Periodic Media [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  9. A. L. Pyatnitskii, G. A. Chechkin, and A. S. Shamaev, Averaging. Methods and Some Applications [in Russian], “Tamara Rozhkovskaya,” Novosibirsk (2007).

  10. R. P. Gilbert, A. Mikelic, “Homogenizing the acoustic properties of the seabed: Part I,” Nonlinear Anal., 40, 185–212 (2000).

    Article  MathSciNet  Google Scholar 

  11. A. S. Shamaev and V. A. Samarin, “On the propagation of acoustic waves in the medium consisting of a viscous fluid and elastic material,” In: Progress in Science and Technology, Contemporary Problems of Mathematics, Algebra. Topology. Geometry [in Russian], All-Union Institute for Scientific and Technical Information (VINITI) Ross. Akad. Nauk, Moscow (2007).

    Google Scholar 

  12. D. A. Kosmodem’yanskii and A. S. Shamaev, “On some spectral properties in porous media saturated with fluid,” Sovrem. Mat., Fundam. Napravl., 17, 88–109 (2006).

    Google Scholar 

  13. A. Mejermanov, “The Nguetseng method of two-scale convergence in problems of filtration and seismoacoustics in elastic porous media,” Sib. Mat. Zh., 48, No. 3, 645–667 (2007).

    Google Scholar 

  14. V. V. Zhikov, “On an extension and application of the method of two-scale convergence,” Mat. Sb., 191, No. 7, 31–72 (2000).

    MathSciNet  Google Scholar 

  15. V. V. Zhikov, “On two-scale convergence,” In: Tr. Petrovskii Semin., No. 23, MGU, Moscow (2003), pp. 149–187.

    Google Scholar 

  16. S. B. Shulga, “Averaging the nonlinear variational problems with the help of two-scale convergence,” Tr. V. A. Steklov Mat. Inst., 235, 1–8 (2001).

    Google Scholar 

  17. J. Sanchez-Hubert, “Asymptotic study of the macroscopic behavior of a solid-liquid mixture,” Math. Methods Appl. Sci., 2, 1–18 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Allaire, “Homogenization and two-scale convergence,” SIAM J. Math. Anal., 23, 1482–1518 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Allaire, A. Damlamian, U. Hornung, “Two-scale convergence on periodic surfaces and applications,” In: Mathematical Modelling of Flow through Porous Media, Editors: A. Bourgeat, C. Carasso, S. Luckhaus, A. Mikelic, Singapore (1995), pp. 15–25.

  20. M. Neuss-Radu, “Some extension of two-scale convergence,” C. R. Acad. Sci. Paris, 322, Ser. I, 899–904 (1996).

    MATH  MathSciNet  Google Scholar 

  21. D. Lukassen, G. Nguetseng, and P. Wall, “Two-scale convergence,” Int. J. Pure Appl. Math., 20, No. 1, 35–86 (2002).

    Google Scholar 

  22. N. S. Bakhvalov and A. V. Knyazev, “Effective computation of averaged characteristics of composites of periodic structure from essentially heterogeneous materials,” Dokl. Akad Nauk SSSR, 313, No. 4, 777–781 (1990).

    Google Scholar 

  23. N. S. Bakhvalov and A. V. Knyazev, “Effective iteration method of solving the Lamé equations for almost incompressible media and Stokes equations,” Dokl. Akad Nauk SSSR, 319, No. 1, 13–17 (1991).

    Google Scholar 

  24. G. P. Panasenko, “Numerical solution of cellular problems of the averaging type,” Zh. Vychisl. Mat. Mat. Fiz., 28, 281–286 (1988).

    MATH  MathSciNet  Google Scholar 

  25. A. V. Miloslavskii, “Spectral properties of the operator bundle arising in viscoelasticity,” Deposited at Ukr. VINITI 17.07.87.

  26. L. D. Akulenko and S. V. Nesterov, “The study of inertia and elastic properties of granulated media saturated with fluid by the resonance method,” Izv. Ross. Akad. Nauk MTT, 5, 145–156 (2002).

    Google Scholar 

  27. L. D. Akulenko and S. V. Nesterov, “Inertia and dissipative properties of a porous medium filled with a viscous fluid,” Izv. Ross. Akad. Nauk MTT, 1, 109–119 (2005).

    Google Scholar 

  28. L. D. Akulenko and S. V. Nesterov, “A dynamical model of a porous medium filled in with a viscous fluid,” Dokl. Ross. Akad. Nauk, Ser. Mekh., 401, No. 5, 630–633 (2005).

    Google Scholar 

  29. L. D. Akulenko and S. V. Nesterov, “Elastic properties of a granulated medium saturated with a fluid,” Izv. Ross. Akad. Nauk MTT, 1, 3–16 (2008).

    Google Scholar 

  30. M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Ration. Mech. Anal., 31, 113–126 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Pandolfi, “The controllability of the Gurtin–Pipkin equation: a cosine operator approach,” Appl. Math. Optim., 52, 143–165 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. V. V. Vlasov and J. Wu, “Solvability and spectral analysis of abstract hyperbolic equations with delay,” Funct. Different. Equat. (2009) (in press).

  33. V. V. Vlasov and A. D. Medvedev, “Functional-differential equations in Sobolev spaces and questions of spectral theory connected with them. I,” Sovrem. Mat., Fundam. Napravl., 30, 3–173 (2008).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shamaev.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 64, Equations of Mathematical Physics, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, V.V., Gavrikov, A.A., Ivanov, S.A. et al. Spectral properties of combined media. J Math Sci 164, 948–963 (2010). https://doi.org/10.1007/s10958-010-9776-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9776-5

Keywords

Navigation