Skip to main content
Log in

Turbulent chaos

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A new definition of a chaotic invariant set for a continuous semi-flow in a metric space is given. This definition generalizes the known definition of Devaney and allows us to take into account a specific feature arising in a noncompact and infinite-dimensional case, the so-called turbulent chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Afraimovich, V. V. Bykov, and L. P. Shil’nikov, “On attracting nonrough limit sets of the type of Lorenz attractor,” Tr. Mosk. Mat. Obshch., 44, 150–212 (1982).

    MathSciNet  Google Scholar 

  2. D. V. Anosov and V. V. Solodov, “Hyperbolic sets,” In: Progress in Science and Technology. Ser. Contemporary Problems of Mathematics. Fundamental Directions [in Russian], 66, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1991), pp. 12–99.

    Google Scholar 

  3. D. Assaf IV and S. Gadbois, “Definition of chaos,” Am. Math. Mon., 99, No. 9, 865 (1992).

    Google Scholar 

  4. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On Devaney’s definition of chaos,” Am. Math. Mon., 99, No. 4, 332–334 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Bowen and D. Ruelle, “The ergodic theory of axiom a flows,” Invent. Math., 79, 181–202 (1975).

    Article  MathSciNet  Google Scholar 

  6. P. Collet and J.-P. Eckmann, Concepts and Results in Chaotic Dynamics: A Short Course, Springer, Berlin-Heidelberg (2006).

    MATH  Google Scholar 

  7. Yu. L. Daletskii and M. G. Krein, The Stability of Solutions to Differential Equations in Banach Space, Nonlinear Analysis and Its Applications [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  8. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading, MA (1989).

    MATH  Google Scholar 

  9. J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys., 57, No. 3, Pt. 1, 617–656 (1985).

    Article  MathSciNet  Google Scholar 

  10. C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, “Strange attractors that are not chaotic,” Physica D, 13, 261–268 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Guckenheimer and F. Holms, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields [Russian translation], Inst. Comput. Res., Moscow–Izhevsk (2002).

    Google Scholar 

  12. B. Hasselblat and A. Katok, A First Course in Dynamics: With a Panorama of Recent Developments, Cambridge University Press, Cambridge (2003).

    Google Scholar 

  13. C. Knudsen, “Chaos without nonperiodicity,” Am. Math. Mon., 101, No. 6, 563–565 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. P. Kuznetov and I. R. Sataev, “The verification of the hyperbolicity conditions for chaotic attractor in the system of connected nonautonomous Van der Pol oscillators,” Izv. Vuzov. PND, 14, No. 5, 3–29 (2006).

    Google Scholar 

  15. A. Yu. Loscutov and A. S. Mikhailov, The Foundations of the Theory of Complicated Systems [in Russian], Inst. Comput. Res., Moscow–Izhevsk (2007).

    Google Scholar 

  16. J. Milnor, “On the concept of attractor,” Commun. Math. Phys., 99, No. 2, 177–196 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  17. Yu. I. Neimark and P. S. Landa, The Stochastic and Chaotic Oscillations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  18. V. V. Nemytskii and V. V. Stepanov, A Qualitative Theory of Differential Equations [in Russian], Center for Regular and Chaotic Dynamics, Moscow–Izhevsk (2004).

    Google Scholar 

  19. V. I. Oseledets, “Multiplicative ergodic theorem. The characteristic Lyapunov exponents of dynamical systems,” Tr. Mosk. Mat. Obshch., 19, 179–210 (1968).

    Google Scholar 

  20. Ya. B. Pesin, Lections on the Theory of Partial Hyperbolicity and Stable Ergodicity [in Russian], MTsNIMO, Moscow (2006).

    Google Scholar 

  21. R. V. Plykin, E. A. Sataev, and S. V. Shlyachkov, “Strange attractors,” In: Progress in Science and Technology. Ser. Contemporary Problems of Mathematics. Fundamental Directions [in Russian], 66, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1991), pp. 100–148.

    Google Scholar 

  22. C. Robinson, “Homoclinic bifurcation to a transitive attractor of Lorenz type,” Nonlinearity, 2, No. 4, 495–518 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Ruelle and F. Takens, “On the nature of turbulence,” Commun. Math. Phys., 20, No. 3, 167–192 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  24. H. G. Schuster and W. Just, Deterministic Chaos. An Introduction, WILEY-VCH, Verlag, GmbH&Co, KGaA, Weinheim (2005).

  25. L. Shilnikov, “Bifurcations and strange attractors,” Proc. ICM, 3, 349–372 (2002).

    MathSciNet  Google Scholar 

  26. P. Touhey, “Yet another definition of chaos,” Am. Math. Mon., 104, No. 5, 411–414 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Tucker, “A rigorous ODE solver and Smale’s 14th problem,” Found. Comput. Math., 2, No. 1, 53–117 (2002).

    MATH  MathSciNet  Google Scholar 

  28. D. V. Turaev and L. P. Shil’nikov, “The pseudohyperbolicity and the problem on periodic perturbation of attractors of Lorenz type,” Dokl. Ross. Akad. Nauk., 418, No. 1, 23–27 (2008).

    MathSciNet  Google Scholar 

  29. D. V. Turaev and L. P. Shil’nikov, “On catastrophes of blue sky,” Dokl. Ross. Akad. Nauk, 342, No. 5, 596–599 (1995).

    MathSciNet  Google Scholar 

  30. M. Vellekoop and R. Berglund, “On intervals, transitivity = chaos’,” Am. Math. Mon., 101, No. 4, 353–355 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York (1996).

    Google Scholar 

  32. G. M. Zaslavskii, The Stochastic Property of Dynamical Systems [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  33. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics. From the Pendulum to Turbulence and Chaos [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kolesov.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 64, Equations of Mathematical Physics, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, A.Y., Rozov, N.K. Turbulent chaos. J Math Sci 164, 881–895 (2010). https://doi.org/10.1007/s10958-010-9771-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-9771-x

Keywords

Navigation