Skip to main content

Advertisement

Log in

One-sided Littlewood–Paley inequality in \( {\mathbb{R}^n} \) for 0 < p ≤ 2

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The one-sided Littlewood–Paley inequality for arbitrary collections of mutually disjoint rectangular parallelepipeds in \( {\mathbb{R}^n} \) for the L p-metric, 0 < p ≤ 2, is proved. The paper supplements author’s earlier work, which dealt with the situation of n = 2. That work was based on R. Fefferman’s theory, which makes it possible to verify the boundedness of certain linear operators on two-parameter Hardy spaces (i.e., Hardy spaces on the product of two Euclidean spaces, \( {H^p}\left( {{\mathbb{R}^{{d_1}}} \times {\mathbb{R}^{{d_2}}}} \right) \)). However, Fefferman’s results are not applicable in the situation where the number of Euclidean factors is greater than 2. Here we employ the more complicated Carbery–Seeger theory, which is a further development of Fefferman’s ideas. This allows us to verify the boundedness of some singular integral operators on the multiparameter Hardy spaces \( {H^p}\left( {{\mathbb{R}^{{d_1}}} \times \cdots \times {\mathbb{R}^{{d_n}}}} \right) \), which leads eventually to the required inequality of Littlewood–Paley type. Bibliography: 13 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Rubio de Francia, “A Littlewood-Paley inequality for arbitrary intervals,” Rev. Mat. Iberoamer., 1, 1–14 (1985).

    MATH  MathSciNet  Google Scholar 

  2. J.-L. Journé, “Calderón-Zygmund operators on product spaces,” Rev. Mat. Iberoamer., 1, 55–91 (1985).

    MATH  Google Scholar 

  3. S. V. Kislyakov and D. V. Parilov, “On the Littlewood-Paley theorem for arbitrary intervals,” J. Math. Sci., 139, 6417–6424 (2006).

    Article  MathSciNet  Google Scholar 

  4. R. Fefferman, “Calderón-Zygmund theory for product domains: H p spaces,” Proc. Nat. Acad. Sci. USA, 83, 840–843 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. N. N. Osipov, “Littlewood-Paley inequality for arbitrary rectangles in \( {\mathbb{R}^2} \) for 0 < p ≤ 2,” Algebra Analiz, 22, 164–184 (2010).

    MathSciNet  Google Scholar 

  6. A. Carbery and A. Seeger, “H p and L p-variants of multiparameter Calderón-Zygmund theory,” Trans. Amer. Math. Soc., 334, 719–747 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Fefferman and E. M. Stein, “H p spaces of several variables,” Acta Math., 129, 137–193 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. F. Gundy and E. M. Stein, “H p theory for the poly-disc,” Proc. Nat. Acad. Sci. USA, 76, 1026–1029 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Sato, “Lusin functions and nontangential maximal functions in the H p theory on the product of upper half-spaces,” Tôhoku Math. J., 37, 1–13 (1985).

    Article  MATH  Google Scholar 

  10. S.-Y. A. Chang and R. Fefferman, “A continuous version of duality of H 1 with BMO on the bidisc,” Ann. Math., 112, 179–201 (1980).

    Article  MathSciNet  Google Scholar 

  11. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970).

  12. S. V. Kislyakov, “Littlewood-Paley theorem for arbitrary intervals: weighted estimates,” J. Math. Sci., 156, 824–833 (2009).

    Article  MATH  Google Scholar 

  13. Q. Xu, “Some properties of the quotient space (L 1(T d)/H 1(D d)),” Illinois J. Math., 37, 437–454 (1993).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Osipov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 376, 2010, pp. 88–115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osipov, N.N. One-sided Littlewood–Paley inequality in \( {\mathbb{R}^n} \) for 0 < p ≤ 2. J Math Sci 172, 229–242 (2011). https://doi.org/10.1007/s10958-010-0195-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0195-4

Keywords

Navigation