Skip to main content
Log in

On the Moutard transformation and its applications to spectral theory and Soliton equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation,” Comm. Math. Phys., 61, 1–30 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  2. Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach Science Publishers, New York–London (1960).

    Google Scholar 

  3. H. Airault, H.P. McKean, and J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem,” Comm. Pure Appl. Math., 30, 95–148 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Athorne and J. J. C. Nimmo, “On the Moutard transformation for integrable partial differential equations,” Inverse Problems, 7, 809–826 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. M. Crum, “Associated Sturm–Liouville systems,” Quart. J. Math. Oxford Ser. (2), 6, 121–127 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Darboux, “Sur une proposition relative aux équations linéarires,” C. R. Acad. Sci. Paris, 94, 1456–1459 (1882).

    Google Scholar 

  7. P. A. M. Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford (1935).

    Google Scholar 

  8. B. A. Dubrovin, I.M. Krichever, and S.P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Sov. Math., Dokl., 17, 947–952 (1976).

    MATH  Google Scholar 

  9. L. D. Faddeev, “The inverse problem in the quantum theory of scattering,” J. Math. Phys., 4, 72–104 (1963).

    Article  MathSciNet  Google Scholar 

  10. L. D. Faddeev, “Properties of the S-matrix of the one-dimensional Schrödinger equation,” Tr. Mat. Inst. Steklova, 73, 314–336 (1964).

    MATH  MathSciNet  Google Scholar 

  11. L. D. Faddeev, “The inverse problem in the quantum theory of scattering. II,” Current Problems in Mathematics, 3, 93–180 (1974).

    MathSciNet  Google Scholar 

  12. I. M. Gel’fand and B. M. Levitan, “On the determination of a differential equation from its spectral function,” Amer. Math. Soc. Transl. (2), 1, 253–304 (1955).

    MATH  MathSciNet  Google Scholar 

  13. P. G. Grinevich and S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrödinger operator, the \( \bar{\partial } \)-method and nonlinear equations,” Funct. Anal. Appl., 20, 94–103 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  14. P. G. Grinevich and S.P. Novikov, “Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I: Energies below the ground state,” Funct. Anal. Appl., 22, No. 1, 19–27 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. C. Hu, S.Y. Lou, and Q.P. Liu, “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation,” Chinese Phys. Lett., 20, 1413–1415 (2003).

    Article  Google Scholar 

  16. L. Infeld and T.E. Hull, “The factorization method,” Rev. Modern Phys., 23, 21–68 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  17. C. E. Kenig, G. Ponce, and L. Vega, “Well–posedness of the inital value problem for the Korteweg–de Vries equation,” J. Amer. Math. Soc., 4, 323–347 (1991).

    MATH  MathSciNet  Google Scholar 

  18. S. V. Manakov, “The method of the inverse scattering problem, and two-dimensional evolution equations,” Uspehi Mat. Nauk, 31, No. 5 (191), 245–246 (1976).

    MATH  MathSciNet  Google Scholar 

  19. V. A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka, Kiev (1977).

    MATH  Google Scholar 

  20. V. B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    MATH  Google Scholar 

  21. A. Menikoff, “The existence of unbounded solutions of the Korteweg–de Vries equation,” Comm. Pure Appl. Math., 25, 407–432 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Moutard, “Sur la construction des équations de la forme \( \frac{1}{z}\frac{{{d^2}z}}{{dxdy}} = \lambda \left( {x,y} \right) \), qui admettent une intégrale générale explicite,” J. École Polytechnique, 45, 1–11 (1878).

    Google Scholar 

  23. R. G. Novikov and G.M. Khenkin, “The \( \bar{\partial } \)-equation in the multidimensional inverse scattering problem,” Russian Math. Surveys, 42, No. 3, 109–180 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  24. S.P. Novikov and A.P. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations,” Trans. Amer. Math. Soc., 179, 109–132 (1997).

    MathSciNet  Google Scholar 

  25. E. Schrödinger, “Further studies on solving eigenvalue problems by factorization,” Proc. Roy. Irish Acad. Sect. A., 46, 183-206 (1940).

    Google Scholar 

  26. E. Schrödinger, “Method of determining quantum-mechanical eigenvalues and eigenfunctions,” Proc. Roy. Irish Acad. Sect. A., 46, 9–16 (1940).

    MATH  MathSciNet  Google Scholar 

  27. E. Schrödinger, “The factorization of the hypergeometric equation,” Proc. Roy. Irish Acad. Sect. A., 47, 53-54 (1941).

    MATH  MathSciNet  Google Scholar 

  28. I. A. Taĭmanov and S.P. Tsarëv, “Two-dimensional Schrödinger operators with rapidly decaying rational potential and multidimensional L 2-kernel,” Russian Math. Surveys, 62, No. 3, 631–633 (2007).

    Article  MathSciNet  Google Scholar 

  29. I. A. Taĭmanov and S.P. Tsarëv, “Two-dimensional Schrödinger rational solitons and their blowup via the Moutard transformation,” Theor. Math. Phys., 157, No. 2, 1525–1541 (2008).

    Article  MATH  Google Scholar 

  30. I. A. Taĭmanov and S.P. Tsarëv, “Blowing up solutions of the Novikov–Veselov equation,” Dokl. Math., Math. Phys., 77, No. 3, 467–468 (2008).

    Article  MATH  Google Scholar 

  31. A.P. Veselov and S.P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Explicit formulas and evolution equations,” Sov. Math., Dokl., 30, 588–591 (1984).

    MATH  Google Scholar 

  32. A.P. Veselov and S.P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators,” Sov. Math., Dokl., 30, 705–708 (1984).

    MATH  Google Scholar 

  33. H. Wahlquist and F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg–de Vries equation,” Phys. Rev. Lett., 31, 1386–1390 (1973).

    Article  MathSciNet  Google Scholar 

  34. V. F. Zaharov, S. V. Manakov, S.P. Novikov, and L.P. Pitaevskiĭ, Theory of Solitons. The Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Taimanov.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 35, Proceedings of the Fifth International Conference on Differential and Functional Differential Equations. Part 1, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A., Tsarëv, S.P. On the Moutard transformation and its applications to spectral theory and Soliton equations. J Math Sci 170, 371–387 (2010). https://doi.org/10.1007/s10958-010-0092-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0092-x

Keywords

Navigation