Skip to main content
Log in

On the generalized Chaplygin system

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider two polynomial bi—Harnilt0nian structures for the generalized integrable Chaplygin system on the sphere S 2 with an additional integral of fourth order in momenta. An explicit procedure for finding variables of separation, separation relations, and transformation of the corresponding algebraic curves of genus two is considered in detail. Bibliography: 21 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Audin, Spinning Tops, a Course on Integrable Systems, Cambridge Studies in Advanced Mathematics, vol. 51, Cambridge Univ. Press, Cambridge (1996).

    MATH  Google Scholar 

  2. S. A. Chaplygin, "A new partial solution of the problem of motion of a rigid body in a liquid,” Trudy Otdel. Fiz . Nauk Obsh. Liub. Est., 11, 7–10 (1903).

    Google Scholar 

  3. B. A. Dubrovin, Riemann Surfaces and Nonlinear Equations, Amer. Math. Soc. (2002).

  4. G. Falqui and M. Pedroni, "Separati0n of variables for bi—Hamilt0nian systems,” Math. Phys. Anal. Geom., 6, 139—179 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Frey and E. Kani. "Curves of genus 2 with elliptic differentials and associated Hurwitz spaces,” in: Lachaud et al (eds.), Arithmetic, Geometry, Cryptography, and Coding Theory, Contemp. Math., 487 (2009), pp. 33–81.

  6. V. B. Kuznetsov and A. V. Tsiganov, "A special case of Neumann’s system and the Kowalewski—Chaplygin—Goryachev top," J. Phys. A., 22, L73–L79 (1989).

    Article  MathSciNet  Google Scholar 

  7. S. Rauch-VVojciechowski and A. V, Tsiganov, “Quasi-point separation of variables for Hénon-Heiles system and system with quartic potential,” J. Physics A, 29, 7769–7778 (1996).

    Article  Google Scholar 

  8. A. M. Lyapunov, "On a certain property of differential equations of the problem of motion of a heavy rigid body having a fixed point,” Soobshch. Kharkov Math. Obshch., Ser. 2, 4, 123—140 (1894).

    Google Scholar 

  9. F. Magri, “Eight lectures on integrable systems," Lect. Notes Phys., 495, 256–296 (1997).

    Article  MathSciNet  Google Scholar 

  10. F. Richelot, “Essai sur une méthode générale pour déterminer la valeur des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes,” C. R. Acad. Sci. Paris, 2, 622–627 (1836).

    Google Scholar 

  11. E. K. Sklyanin, "Separation of variables — new trends,” Progr. Theor. Phys. Suppl., 118, 35 (1995).

    Article  MathSciNet  Google Scholar 

  12. A. V. Tsiganov, “On the Kowalevski—Goryachev—Chaplygin gyrostat," J. Phys. A, Math. Gen., 35, L309—L318 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. V. Tsiganov, “On two different bi-Hamiltonian structures for the Toda lattice,” J. Phys. A: Math. Theor., 40, 6395–6406 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. V. Tsiganov, "Separation of variables for a pair of integrable systems on so* (4)," Dokl. Math., 76, 839—842 (2007).

    Article  MATH  Google Scholar 

  15. A. V. Tsiganov, “On bi-Hamiltonian structure of some integrable systems on so*(4),” J. Nonlinear Math. Phys., 15, 171–185 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. V. Tsiganov, "On bi-Hamiltonian geometry of the Lagrange top,” J. Phys. A: Math, Theor., 41, 315212 (12pp) (2008).

    Article  MathSciNet  Google Scholar 

  17. A. V. Tsiganov, "The Poisson bracket compatible with the classical reflection equation algebra,” Regular Chaotic Dynamics, 13, 191–203 (2008).

    Article  MathSciNet  Google Scholar 

  18. P. Vanhaecke, “1ntegrable systems in the realm of algebraic geometry," Lect. Notes Math., 1638 (1996).

  19. A. V. Vershilov and A. V. Tsiganov, “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion,” J. Phys. A: Math. Theor., 42, 105203 (12pp) (2009).

    Article  MathSciNet  Google Scholar 

  20. H. M. Yehia and A. A. Elmandouh, “New integrable systems with a quartic integral and new generalizations of Kovalevskaya and Goriatchev cases," Regular Chaotic Dynamics, 13, 56—69 (2008),

    MathSciNet  Google Scholar 

  21. S. L. Ziglin, “Branching of solutions and non—existence of first integrals in Hamiltonian mechanics. I, II," Funkts, Anal. Prilozh., 16, 181–189 (1982); 17, 6–17 (1983).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsiganov.

Additional information

Published in Zapiski Nauchnykh Seminamv POMI, Vol. 374, 2010, pp. 250–267.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiganov, A.V. On the generalized Chaplygin system. J Math Sci 168, 901–911 (2010). https://doi.org/10.1007/s10958-010-0036-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0036-5

Keywords

Navigation