Skip to main content
Log in

Solution of an integrable model of the spinor Bose–Einstein condensate with dipole-dipole interaction

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We solve a model which describes internal degrees of freedom of the spinor Bose–Einstein condensate with dipole-dipole interaction up to its eigenstates and eigenvalues. A representation of the Hamiltonian of the model in terms of generators of the su(1, 1) algebra allows one to develop the quantum inverse method for its study. The method of solution provides a general framework within which many related problems can be solved similarly. Bibliography: 15 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Law, H. Pu, and N. P. Bigelow, “Quantum spin mixing in spinor Bose-Einstein condensates,” Phys. Rev. Lett., 24, 5257 (1998).

    Article  Google Scholar 

  2. H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose-Einstein condensate,” Phys. Rev. A, 60, 1463(1999).

    Article  Google Scholar 

  3. Ö. E. Müsteapliogglu, M. Zhang, S. Yi, L. You, and C. P. Sun, “Dynamic fragmentation of a spinor Bose-Einstein condensate,” Phys. Rev. A, 68, 63616 (2003).

    Article  Google Scholar 

  4. S. Yi, L. You, and H. Pu, “Quantum phases of dipolar spinor condensates,” Phys. Rev. Lett., 93, 040403 (2004).

    Article  Google Scholar 

  5. M. Takahashi, Sankalpa Ghosh, T. Mizushima, and K. Mahida, “Spinor dipolar Bose-Einstein condensates: Classical spin approah,” Phys. Rev. Lett., 98, 260403(2007).

    Article  Google Scholar 

  6. T. Lahaye, J. Metz, T. Koh, B. Fröhlih, A. Griesmaier, and T. Pfau, “A purely dipolar quantum gas,” in: Atomic Physics 21, Proc. XXI Intern. Conf. of Atomic Phiysics (ICAP2008).

  7. S. Yi and H. Pu, “Dipolar spinor Bose-Einstein condensates,” arXiv:0804.0191v1 (2008).

  8. E. K. Sklyanin, L. A. Takhtajan, and L. D. Faddeev, “Quantum inverse problem method. I,” Teor. Mat. Fiz., 40, 688 (1979).

    Google Scholar 

  9. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  10. N. M. Bogoliubov, “Spinor Bose condensate and su(1,1) Richardson model,” Zap. Nauchn. Semin. POMI, 317, 43 (2004).

    MATH  Google Scholar 

  11. A. Rybin, G. Kastelewicz, J. Timonen, and N. Bogoliubov, “The su(1,1) Tavis-Cummings model,” J. Phys. A, 31, 4705 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Gerry and A. Benmoussa, “Two mode coherent states for SU(1,1)⨂ SU(1,1),” Phys. Rev. A, 62, 033812 (2000).

    Article  Google Scholar 

  13. R. W. Richardson, “Exactly solvable many-boson model,” J. Math. Phys., 9, 1327 (1968).

    Article  Google Scholar 

  14. M. Gauden, La Fonction D'onde de Bethe, Masson, Paris (1983).

    Google Scholar 

  15. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge Univ. Press, Cambridge (1931).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Abarenkova.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 374, 2010, pp. 5–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abarenkova, N.I., Bogoliubov, N.M. Solution of an integrable model of the spinor Bose–Einstein condensate with dipole-dipole interaction. J Math Sci 168, 759–771 (2010). https://doi.org/10.1007/s10958-010-0024-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0024-9

Keywords

Navigation