Skip to main content
Log in

Nonlinear interaction of internal and surface gravity waves in a two-layer fluid with free surface

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A new nonlinear model of the propagation of wave packets in the system “liquid layer with solid bottom–liquid layer with free surface” is considered. With the use of the method of multiple-scale expansions, the first three linear approximations of the nonlinear problem are obtained. Solutions of problem of the first approximation are constructed and analyzed in detail. It is shown that there exist internal and surface components of the wave field, and their interaction is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Avramenko, “Resonance and shape of a wave packet at the surface of contact of liquid media,” Visnyk Khark. Nats. Univ., Ser. Mat., Appl. Mat., Mech., Issue 50, 122–128 (2001).

  2. R. Grimshaw and E. N. Pelinovskii, “Interaction of solitary surface and internal waves with traveling disturbances,” Dokl. Ross. Akad. Nauk, 344, No. 3, 394–396 (1995).

    MathSciNet  Google Scholar 

  3. N. N. Makarenko and Zh. L. Mal’tseva, “Asymptotic models of internal stationary waves,” Prikl. Mekh. Tekh. Fiz., 49, No. 4, 151–161 (2008).

    MathSciNet  Google Scholar 

  4. I. T. Selezov and O. V. Avramenko, “Third-order evolutionary equation for nonlinear wave packets at transcritical wave numbers,” Din. Sist., Issue 17, 58–67 (2001).

    Google Scholar 

  5. I. T. Selezov and O. V. Avramenko, “Evolution of nonlinear wave packets with regard for surface tension at the contact surface,” Mat. Metody Fiz.-Mekh. Polya, 44, No. 2, 113–122 (2001).

    MATH  MathSciNet  Google Scholar 

  6. I. T. Selezov, O. V. Avramenko, and Yu. V. Gurtovyi, “Nonlinear stability of the propagation of wave packets in a two-layer fluid,” Prikl. Gidromekh., 8 (80), No. 4, 60–65 (2006).

    Google Scholar 

  7. I. T. Selezov, O. V. Avramenko, and Yu. V. Gurtovyi, “Specific features of the propagation of wave packets in a two-layer fluid of finite depth,” Prikl. Gidromekh., 7 (79), No. 1, 80–89 (2005).

    MathSciNet  Google Scholar 

  8. A. N. Serebryanyi, A. V. Furduev, A. A. Aredov, and N. N. Okhrimenko, “Noise of an internal wave of great amplitude in the ocean,” Dokl. Ross. Akad. Nauk, 402, No. 4, 543–547 (2005).

    Google Scholar 

  9. M. J. Ablowitz and H. Segur, “Long internal waves in fluids of great depth,” Stud. Appl. Math., 62, 249–262 (1980).

    MATH  MathSciNet  Google Scholar 

  10. V. V. Bakhanov, R. A. Kropfli, and L. A. Ostrovsky, “On the effect of strong internal waves on surface waves,” in: IGARSS ’99: Proc. Geoscience and Remote Sensing Symp. IEEE 1999 International, Vol. 1 (1999), pp. 170–172.

  11. T. B. Benjamin, “Internal waves of finite amplitude and permanent form,” J. Fluid Mech., 25, 241–270 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  12. T. B. Benjamin, “Internal waves of permanent form of great depth,” J. Fluid Mech., 29, 559–592 (1967).

    Article  MATH  Google Scholar 

  13. C. J. Benney, “Long nonlinear waves in fluid flows,” J. Math. Phys., 45, 52–63 (1966).

    MATH  MathSciNet  Google Scholar 

  14. P. L. Bhatnagar, Nonlinear Waves in One-Dimensional Dispersive Systems, Clarendon, Oxford (1979).

    MATH  Google Scholar 

  15. J. M. Buick and A. J. Martin, “Comparison of a lattice Boltzmann simulation of steep internal waves and laboratory measurements using particle image velocimetry,” Eur. J. Mech., Ser. B: Fluids, 22, No. 1, 27–38 (2003).

    Article  MATH  Google Scholar 

  16. R. Camassa, W. Choi, H. Michallet, et al., “On the realm of validity of strongly nonlinear asymptotic approximations for internal waves,” J. Fluid. Mech., 549, 1–23 (2006).

    Article  MathSciNet  Google Scholar 

  17. M. Carr and P. A. Davies, “The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid,” Phys. Fluids, 18, 016601-1–016601-10 (2006).

    Google Scholar 

  18. C.-M. Liu, “Second-order random internal and surface waves in a two-fluid system,” Geophys. Res. Lett., 33 (2006); L06610, doi:10.1029/2005GL025477.

    Article  Google Scholar 

  19. W. Choi and R. Camassa, “Fully nonlinear internal waves in a two-fluid system,” J. Fluid Mech., 396, 1–36 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  20. R. E. Davis and A. Acrivos, “Solitary internal waves in deep water,” J. Fluid Mech., 29, 593–607 (1967).

    Article  MATH  Google Scholar 

  21. S. Debsarma and K. P. Das, “Fourth-order nonlinear evolution equations for a capillary-gravity wave packet in the presence of another wave packet in deep water,” Phys. Fluids, 19, 097101-1–097101-16 (2007).

    Article  Google Scholar 

  22. A. N. Donato, E. D. H. Peregrine, and J. R. Stocker, “The focusing of surface waves by internal waves,” J. Fluid Mech., 384, 27–58 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Grimshaw, E. Pelinovsky, and O. Poloukhina, “Higher-order Korteweg–de Vries models for internal solitary wave in a stratified shear flow with free surface,” Nonlin. Process. Geophys., 9, No. 3, 221–235 (2002).

    Article  Google Scholar 

  24. B. I. Haciyev, “Nonstationary waves in two-layered fluid caused by normal loading at the interface,” in: Proc. IMM (Inst. Math. Mech., NAS of Azerbaijan) (2006), pp. 119–126.

  25. Y. Hashizume, “Interaction between short surface waves and long internal waves,” J. Phys. Soc. Jpn., 48, No. 2, 631–638 (1980).

    Article  Google Scholar 

  26. P. Holloway, E. Pelinovsky, and T. Talipova, “Internal tide transformation and oceanic internal solitary waves,” in: R. Grimshaw (editor), Environmental Stratified Flows, Kluwer (2000), pp. 29–60.

  27. T. Kubota, D. R. S. Ko, and L. D. Dobbs, “Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth,” AIAA. J. Hydrodyn., 12, 157–165 (1978).

    Google Scholar 

  28. D. Q. Lu and A. T. Chwang, “Interfacial waves due to a singularity in a system of two semi-infinite fluids,” Phys. Fluids, 17, 102107-1–102107-9 (2005).

    MathSciNet  Google Scholar 

  29. A. Nayfeh, “Nonlinear propagation of wave-packets on fluid interface,” Trans. ASME, Ser. E : J. Appl. Mech., 43, No. 4, 584–588 (1976).

    Google Scholar 

  30. H. Ono, “Algebraic solitary waves in stratified fluids,” J. Phys. Soc. Jpn., 39, 1082–1091 (1975).

    Article  Google Scholar 

  31. H. Segur, “The Korteweg–de Vries equation and water waves. Solutions of the equations. Part 1,” J. Fluid Mech., 59, 721–736 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Segur and J. L. Hammack, “Soliton models of long internal waves,” J. Fluid Mech., 118, 285–304 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  33. I. Selezov, O. Avramenko, A. Nayfeh, et al., “Propagation of water wave-packets at the interface of layer and half-space fluid,” in: A. Nayfeh and K. Rozhdestvensky (editors), Proc. 2nd Int. Conf. “Asymptotics in Mechanics” (St. Petersburg, Russia, Oct. 13–16, 1996), St. Petersburg State Marine Tech. Univ., St.Petersburg (1997), pp. 245–252.

  34. I. Selezov and P. Huq, “Asymptotic-heuristic analysis of nonlinear water wave propagation in two- and three-layer fluids,” in: A. Nayfeh and K. Rozhdestvensky (editors), Proc. 2nd Int. Conf. “Asymptotics in Mechanics” (St. Petersburg, Russia, Oct. 13–16, 1996), St. Petersburg State Marine Tech. Univ., St.Petersburg (1997), pp. 237–244.

  35. I. T. Selezov and S. V. Korsunsky, “Wave propagation along the interface between the liquid metal-electrolyte,” in: Int. Conf. “MHD Processes Protect. Environment” (Kiev–Odessa, June 24–29, 1992), Part 1 (1992), pp. 111–117.

  36. I. T. Selezov, M. V. Mironchuk, and P. Huq, “Evolution equation for waves forced by a slender obstacle in a two-layer fluid,” Dopov. Nats. Akad. Nauk Ukr., No. 4, 77–82 (1999).

    MathSciNet  Google Scholar 

  37. I. Shingareva and C. L. Celaya, “On frequency-amplitude dependences for surface and internal standing waves,” J. Comput. Appl. Math., 200, No. 2, 459–470 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  38. B. S. Sutherland and J. T. Nault, “Intrusive gravity currents propagating along thin and thick interfaces,” J. Fluid Mech., 586, 109–118 (2007).

    Article  MATH  Google Scholar 

  39. M. Vincze, P. Kozma, B. Gyure, et al., “Amplified internal pulsations on a stratified exchange flow excited by interaction between a thin sill and external seiche,” Phys. Fluids, 19, 108108-1–108108-4 (2007).

    Article  Google Scholar 

  40. K. M. Watson, “The coupling of surface and internal gravity waves revised,” J. Phys. Oceanogr., 20, 1233–1248 (1990).

    Article  Google Scholar 

  41. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1980).

    Google Scholar 

  42. H. C. Yuen and B. M. Lake, “Nonlinear dynamics of deep-water waves,” Adv. Appl. Mech., 22, 33–45 (1982).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 52, No. 1, pp. 72–83, January–March, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selezov, I.T., Avramenko, O.V., Gurtovyi, Y.V. et al. Nonlinear interaction of internal and surface gravity waves in a two-layer fluid with free surface. J Math Sci 168, 590–602 (2010). https://doi.org/10.1007/s10958-010-0010-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-010-0010-2

Keywords

Navigation