Skip to main content
Log in

To the problem of the recovery of nonlinearities in equations of mathematical physics

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The general construction for finding all “essentially different” nonlinearities in equations of mathematical physics is exemplified by the inverse problem of the Grad–Shafranov equation. We present an algorithm that allows one to recover relatively fast all essentially different sought-for nonlinear right-hand sides of the Grad–Shafranov equation. We present the first example of a domain with smooth boundary for which the inverse problem has at most one solution in the class of affine functions, and also in the class of exponential functions. We select some subset of simply connected domains that model, in some sense, the so-called doublet configurations, for which the inverse problem has at least two essentially different solutions in the class of analytic functions. In the concluding subsection of the paper, we indicate a method of recovery, from boundary data, of all essentially different nonlinearities in equations of mathematical physics of considerably general kind, which includes a system of equations that describes combustion and detonation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, and A. A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Kluwer (1998).

  2. S. I. Bezrodnykh, V. I. Vlasov, and A. S. Demidov, “The inverse problem of the Grad–Shafranov equation,” in: Int. Conf. “Contemporary Problems of Mathematics, Mechanics, and Their Application,” dedicated to the 70th Anniversary of the MSU Rector Academician V. A. Sadovnichy, Moscow, March 30— April 2, 2009. Proceedings, MSU, Moscow (2009), p. 132.

  3. A. D. Valiev and A. S. Demidov, “Nonnegative trigonometric polynomials with fixed mean passing through given points,” Math. Notes., 62, No. 3, 390–392 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. S. Demidov, “On the inverse problem for the Grad–Shafranov equation with affine right-hand side,” Russ. Math. Surv., 55, No. 6, 1141–1142 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. S. Demidov, “On reconstruction of polynomial nonlinearities in equations of mathematical physics,” in: Int. Conf. “Differential Equations and Related Topics” dedicated to Prof. I. G. Petrovskii. Book of Abstracts, Moscow (2007), pp. 73–74.

  6. A. S. Demidov and L. E. Zakharov, “Direct and inverse problems in the plasma equillibrium theory,” Russ. Math. Surv., 29, No. 6, 203 (1974).

    Google Scholar 

  7. Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations,” in: Itogi Nauki: Sovremennye Problemy Mat., 9, VTNITI, Moscow (1976), pp. 5–130.

  8. I. N. Zverev and N. N. Smirnov, Gasdynamics of Combustion [in Russian], Izd. Mosk. Univ., Moscow (1987).

    Google Scholar 

  9. A. N. Kolmogorov and V. M. Tikhomirov, “ε-entropy and ε-capacity of sets in functional spaces,” Am. Math. Soc., Transl., II. Ser., 17, 227–364 (1961).

    Google Scholar 

  10. R. Courant, Partial Differential Equations, Interscience, London (1962).

    MATH  Google Scholar 

  11. Y. L. Luke, The Special Functions and Their Approximations, Academic Press, San Diego (1969).

    MATH  Google Scholar 

  12. G. Polya and G. Szegő, Problems and Theorems from Analysis, Springer, Berlin (1972).

    Google Scholar 

  13. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman and Hall, CRC Press, Boca Raton (2003).

    Google Scholar 

  14. V. M. Tikhomirov, Some Questions in Approximation Theory [in Russian], Izd. Mosk. Univ., Moscow (1976).

    Google Scholar 

  15. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Dover, New York (1990).

    Google Scholar 

  16. E. Beretta and M. Vogelius, “An inverse problem originating from magnetohydrodynamics,” Arch. Rational Mech. Anal., 115, 137–152 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Beretta and M. Vogelius, “An inverse problem originating from magnetohydrodynamics. II. The case of the Grad–Shafranov equation,” Indiana Univ. Math. J., 41, 1081–1118 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Beretta and M. Vogelius, “An inverse problem originating from magnetohydrodynamics. III. Domains with corners of arbitrary angles,” Asymptotic Anal., 11, 289–315 (1995).

    MathSciNet  MATH  Google Scholar 

  19. J. Blum and H. Buvat, “An inverse problem in plasma physics: The identification of the current density profile in a tokamak,” in: L. T. Biegler, T. F. Coleman, A. R. Conn, and F. N. Santosa, eds., Large-Scale Optimisation with Applications. Part I: Optimization in Inverse Problems and Design, Springer, New York (2002), www.inria.fr/rapportsactivite/RA2002/idopt/bibliographie.html.

    Google Scholar 

  20. A. S. Demidov, “Sur la perturbation ‘singulière’ dans un problème à frontière libre,” in: Proc. Conf. “Singular Perturbations and Boundary Layer Theory” held in Lyon, 1976, Lect. Notes Math., Vol. 594, Springer (1977), pp. 123–130.

  21. A. S. Demidov and M. Moussaoui, “An inverse problem originating from magnetohydrodynamics,” Inverse Problems, 20, 137–154 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. S. Demidov, V. V. Petrova, and V. M. Silantiev, “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak,” C. R. Acad. Sci. Paris. Sér. I, 323, 353–358 (1996).

    MathSciNet  MATH  Google Scholar 

  23. S. I. Pokhozhaev, in: M. Chipot, ed., Handbook of Differential Equations Station, Vol. 5, Elsevier, Amsterdam (2008), pp. 49–209.

  24. V. D. Pustovitov, “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems,” Nucl. Fusion, 41, No. 6, 721–730 (2001).

    Article  Google Scholar 

  25. V. D. Pustovitov, “Theoretical principles of the plasma-equilibrium control in stellarators,” Rev. Plasma Phys., 21, 1–201 (2001).

    Google Scholar 

  26. Y. Suzuki, H. Yamada, N. Nakajima, K. Watanabe, Y. Nakamura, and T. Hayashi, “Theoretical considerations of doublet-like configuration in LHD,” Nucl. Fusion, 46, 123–132 (2006).

    Article  Google Scholar 

  27. M. Vogelius, “An inverse problem for the equation ∆u = −cud,” Ann. Inst. Fourier, 44, 1181–1209 (1994).

    MathSciNet  MATH  Google Scholar 

  28. L. E. Zakharov, The Theory of Variances of Equilibrium Reconstruction, http://w3.pppl.gov/~zakharov (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Demidov.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 27, Part I, pp. 75–125, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidov, A.S., Kochurov, A.S. & Popov, A.Y. To the problem of the recovery of nonlinearities in equations of mathematical physics. J Math Sci 163, 46–77 (2009). https://doi.org/10.1007/s10958-009-9658-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9658-x

Keywords

Navigation