Skip to main content
Log in

Optimization of a patch

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study optimal patterns of a patch made of an elastic anisotropic homogeneous material for covering a hole in a two-dimensional body possessing different physical characteristics. In addition to the optimization problem for inclusions in two-dimensional and three-dimensional elastic and piezoelectric bodies, we also consider similar problems for an arbitrary formally selfadjoint elliptic system of differential equations in multidimensional domains. A condition for the stationarity of the energy functional is obtained; for a free parameter the matrix of orthogonal transformations of the Euclidean space is taken; the result is based on an algebraic fact about small increments of orthogonal and unitary matrices. Bibliography: 23 titles. Illustrations: 1 figure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer, Berlin, (1992).

    MATH  Google Scholar 

  2. M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, Philadelphia (2001).

  3. D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Birhäuser, Boston (2005).

    MATH  Google Scholar 

  4. S. A. Nazarov, “The Eshelby theorem and optimal patch problem” [in Russian], Algebra Anal. 21, No. 5, 153–193 (2009).

    Google Scholar 

  5. W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1, Berlin: Akademie-Verlag, Berlin (1991); English transl.: V. Maz’ya, S. Nazarov, B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. 1, Birkhäuser, Basel (2000).

    Google Scholar 

  6. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems [in Russian], Nauka, Moscow (1989); English transl.: Am. Math. Soc., Providence, RI (1992).

    MATH  Google Scholar 

  7. J. Eshelby, Continual Dislocation Theory [Russian transl.], IL, Moscow (1963).

    Google Scholar 

  8. I. A. Kunin, Elastic Media with Microstructure. Vol.2. Three Dimensional Models, Springer, Berlin (1983).

    Google Scholar 

  9. T. Mura, Micromechanics of Defects in Solids, Kluwer Academic, Dordrecht (1987).

    Google Scholar 

  10. S. K. Kanaun and V. M. Levitin, Method of Effective Filed in Mechanics of Composite Materials [in Russian], Izd-vo Petrozavod. Univer., Petrozavodsk (1993).

    Google Scholar 

  11. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967).

    Google Scholar 

  12. O. A. Ladyzhenskaya, Boundary-Value Problems in Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  13. J. L. Lions and E. Magenes Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin (1972).

    Google Scholar 

  14. S. A. Nazarov, “Selfadjoint elliptic boundary value problems. The polynomial property and formally positive operators” [in Russian], Probl. Mat. Anal. 16, 167–192 (1997); English transl.: J. Math. Sci., New York 92, No. 6, 4338–4353 (1998).

    Google Scholar 

  15. S. A. Nazarov, “The polynomial property of selfadjoint elliptic boundary value problems and the algebraic description of their attributes” [in Russian], Usp. Mat. Nauk 54, No. 5, 77–142 (1999); English transl.: Russ. Math. Surv. 54, No. 5, 947–1014 (1999).

    Google Scholar 

  16. S. G. Lekhnitskij, Theory of Elasticity of an Anisotropic Body [in Russian], Nauka, Moscow (1977); English transl.: Mir Publishers, Moscow (1981).

    Google Scholar 

  17. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates [in Russian], Nauchanaya Kniga (IDMI), Novosibirsk (2002).

    Google Scholar 

  18. V. Z. Parton and B. A. Kudryavtsev, Electric/elasticity of piezoelectric and electrically conducting bodies [in Russian], Mauka, Moscow (1988).

    Google Scholar 

  19. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Mechanics of Connected Fields in Elements of Constructions [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  20. S. Langer, S. A. Nazarov, and M. Specovius-Neugebauer, “Affine transforms of three-dimensional anisotropic media and explicit formulas for fundamental matrices” [in Russian], Prikl. Mekh. Tekh. Fiz. 47, No. 2, 95–102 (2006); English transl.: J. Appl. Mech. Tech. Phys. 47, No. 2, 229–235 (2006).

    MATH  MathSciNet  Google Scholar 

  21. Z. Suo, C.-M. Kuo, D. M. Barnett, J. R. Willis, “Fracture mechanics for piezoelectric ceramics,” J. Mech. Phys. Solids 40. No. 4, 739–765 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. A. Kulikov, S. A. Nazarov, “Cracks in piezoelectric and electrically conducting bodies” [in Russian], Sib. Zhurn. Ind. Mat. 8, No. 1, 70–87 (2005).

    MathSciNet  Google Scholar 

  23. S. A. Nazarov and M. Specovius-Neugebauer, “Singularities at the vertex of a crack at the conjuctin of piezoelectric bodies” [in Russian], Zap. Nauchn. Semin. POMI 34, 241–271 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Translated from Problemy Matematicheskogo Analiza, 42, August 2009, pp. 65–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Optimization of a patch. J Math Sci 162, 373–392 (2009). https://doi.org/10.1007/s10958-009-9642-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9642-5

Keywords

Navigation