Skip to main content
Log in

A heuristic for the stability number of a graph based on convex quadratic programming and tabu search

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Recently, a characterization of the Lovász theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alizadeh, “A sublinear-time randomized parallel algorithm for the maximum clique problem in perfect graphs,” In: ACM-SIAM Symposium on Discrete Algorithms, Vol. 2, 188–194 (1991).

  2. N. Alon and N. Kahale, “Approximating the independence number via the theta-function,” Math. Program., 80, No. 3, 253–264 (1988).

    Article  MathSciNet  Google Scholar 

  3. S. Benson and Y. Ye, “Approximating maximum stable set and minimum graph coloring problems with the positive semidefinite relaxation,” In: Applications and Algorithms of complementarity, Eds. M. Ferris and J. Pang , Kluwer Academic Publishers, (2000), pp. 1–18.

  4. J. V. Burke, A. S. Lewis, and M. L. Overton, “Two numerical methods for optimizing matrix stability,” Linear Algebra Appl., 351–352, 117–145 (2002).

    Article  MathSciNet  Google Scholar 

  5. J. V. Burke, A. S. Lewis, and M. L. Overton, “A robust gradient sampling algorithm for nonsmooth, nonconvex optimization,” SIAM J. Optim., 15, No. 3, 751–779 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Burer, R. D. C. Monteiro, and Y. Zhang, “Maximum stable formulations and heuristics based on continuous optimization,” Math Program., 94, No. 1, 137–166 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  7. F. H. Clarke, “Optimization and nonsmooth analysis,” Classics Appl. Math., 5, SIAM, Philadelphia (1990).

    MATH  Google Scholar 

  8. L. Cavique, C. Rego, and I. Themido, “Estruturas de vizinhança e procura local no problema da clique máxima,” Investigacón Oper., 22, 1–18 (2002).

    Google Scholar 

  9. L. Cavique, C. Rego, and I. Themido, “A scatter search algorithm for the maximum clique problem,” In: Essays and Surveys in Metaheuristics, eds. C. Ribeiro and P. Hansen, Kluwer Academic Publishers (2002), pp. 227–244.

  10. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers (1997).

  11. F. Glover, “A template for scatter search and path relinking,” In: Lecture Notes in Computer Science, Eds. J.-K. Hao, E. Lutton, E. Ronald, M. Schoenaurer and D. Snyers (1997), pp. 1–5.

  12. F. Glover, “Scatter search and path relinking,” In: New Ideas in Optimization (D. Corne, M. Dorigo, and F. Glover, eds.), McGraw-Hill International (1999).

  13. M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin (1988).

    MATH  Google Scholar 

  14. G. Gruber and F. Rendl, “Computational experience with stable set relaxations,” SIAM J. Optim., 13, No. 4, 1014–1028 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. S. Johnson, “Approximation algorithms for combinatorial problems,” J. Comput. System Sci., 9, 256–278 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  16. K. C. Kiwiel, “Methods of descent for nondifferentiable optimization,” Lecture Notes in Math., 1133, Springer-Verlag, Berlin, New York (1985).

    MATH  Google Scholar 

  17. D. E. Knuth, “The sandwich theorem,” Electron. J. Combin., 1, Article 1 (1994).

  18. L. Lovász, “On the Shannon capacity of a graph,” IEEE Trans. Inform. Theory, 25, No. 2, 1–7 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. J. Luz, “An upper bound on the independence number of a graph computable in polynomial time,” Oper. Res. Lett., 18, 139–145 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  20. C. J. Luz and A. Schrijver, “A convex quadratic characterization of the Lovász theta number,” SIAM J. Discrete Math., 19, No. 2, 382–387 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  21. E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice-Hall (1977).

  22. E. A. Yildirim and X. Fan, “On extracting maximum stable sets in perfect graphs using Lovász’s theta function,” Comput. Optim. Appl., 33, Nos. 2–3, 229–247 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cavique.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 63, Optimal Control, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavique, L., Luz, C.J. A heuristic for the stability number of a graph based on convex quadratic programming and tabu search. J Math Sci 161, 944–955 (2009). https://doi.org/10.1007/s10958-009-9613-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9613-x

Keywords

Navigation