Skip to main content
Log in

Greedy heuristics for the diameter-constrained minimum spanning tree problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The diameter-constrained minimum spanning tree problem is an NP-hard combinatorial optimization problem that seeks a minimum cost spanning tree with a limit D imposed upon the length of any path in the tree. We begin by presenting four constructive greedy heuristics and, secondly, we present some second-order heuristics, performing some improvements on feasible solutions, hopefully leading to better objective function values. We present a heuristic with an edge exchange mechanism, another that transforms a feasible spanning tree solution into a feasible diameter-constrained spanning tree solution, and finally another with a repetitive mechanism. Computational results show that repetitive heuristics can improve considerably over the results of the greedy constructive heuristics, but using a huge amount of computation time. To obtain computational results, we use instances of the problem corresponding to complete graphs with a number of nodes between 20 and 60 and with the value of D varying between 4 and 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abdalla and N. Deo, “Random-tree diameter and the diameter-constrained MST,” Int. J. Comput. Math., 79 (2002).

  2. A. Abdalla, N. Deo, and R. Fraceschini, “Parallel heuristics for the diameter-constrained minimum spanning tree,” Congres. Numer., 136, 97–118 (1999).

    MATH  Google Scholar 

  3. A. Abdalla, N. Deo, N. Kumar, and T. Terry, “Parallel computation of a diameter-constrained MST and related problems,” Congres. Numer., 126, 131–155 (1997).

    MATH  MathSciNet  Google Scholar 

  4. N. R. Achuthan and L. Caccetta, “Minimum weight spanning trees with bounded diameter,” Austr. J. Combin., 5, 261–276 (1992).

    MATH  MathSciNet  Google Scholar 

  5. N. R. Achuthan, L. Caccetta, P. Caccetta, and J. F. Geelen, “Computational methods for the diameter restricted minimum weight spanning tree problem,” Austr. J. Combin., 10, 51–71 (1994).

    MATH  MathSciNet  Google Scholar 

  6. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag (2000).

  7. N. Deo and A. Abdalla, “Computing a diameter-constrained minimum spanning tree in parallel, Lect. Notes Comput. Sci., 1767, 17–31 (2000).

    Article  Google Scholar 

  8. M. Fernandes, L. Gouveia, and S. Voss, “Determining hop-constrained spanning trees with repetitive heuristics,” In: Proceedings of the INFORMS Telecom Conference, 2006.

  9. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman (1979).

  10. L. Gouveia, “Multicommodity flow models for spanning trees with hop constraints,” Eur. J. Oper. Res., 95, 178–190 (1996).

    Article  MATH  Google Scholar 

  11. L. Gouveia and T. Magnanti, “Network flow models for designing diameter-constrained minimum-spanning and Steiner trees,” Networks, 41, No. 3, 159–173 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Gouveia, T. Magnanti, and C. Requejo, “An intersecting tree model for odd-diameterconstrained minimum spanning and Steiner trees,” Ann. Oper. Res., 146 (2006).

  13. B. A. Julstrom and G. R. Raidl, “A permutation-coded evolutionary algorithm for the boundeddiameter minimum spanning tree problem, In: Genetic and Evolutionary Computation Conferences Workshops Proceedings, Workshop on Analysis and Design of Representations (2003), pp. 2–7.

  14. M. Karnaugh, “A new class of algorithms for multipoint network optimization,” IEEE Trans. Commun., 24, 500–505 (1976).

    Article  MATH  Google Scholar 

  15. A. Kershenbaum, R. Boorstyn, and R. Oppenheim, “Second-order greedy algorithms for centralized teleprocessing network design,” IEEE Trans. Commun., 28, 1835–1838 (1980).

    Article  Google Scholar 

  16. R. Patterson, H. Pirkul, and E. Rolland, “A memory adaptative reasoning technique for solving the capacitated minimum spanning tree problem,” J. Heurist., 5, 159–180 (1999).

    Article  MATH  Google Scholar 

  17. R. Prim, “Shortest connection networks and some generalization,” Bell Syst. Tech. J., 36, 1389–1401 (1957).

    Google Scholar 

  18. G. R. Raidl and B. A. Julstrom, “Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem,” In: Proceedings of the 2003 ACM Symposium on Applied Computing (2003), pp. 747–752.

  19. A. Singh and A. K. Gupta, “Improved heuristics for the bounded-diameter minimum spanning tree problem,” Soft Comput., 11, 911–921 (2007).

    Article  Google Scholar 

  20. K. A. Woolston and S. L. Albin, “The design of centralized networks with reliability and availability constraints,” Comput. Oper. Res., 15, No. 3, 207–217 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Requejo.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 63, Optimal Control, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Requejo, C., Santos, E. Greedy heuristics for the diameter-constrained minimum spanning tree problem. J Math Sci 161, 930–943 (2009). https://doi.org/10.1007/s10958-009-9611-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9611-z

Keywords

Navigation