Skip to main content

Domino tilings of Aztec diamonds and squares

An Aztec diamond of rank n is a rhombus of side length n on the square grid. We give several new combinatorial proofs of known theorems about the numbers of domino tilings of diamonds and squares. We also prove generalizations of these theorems for the generating polynomials of some statistics of tilings. Some results here are new. For example, we describe how to calculate the rank of a tiling using special weights of edges on the square grid. Bibliography: 17 titles.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. L. Berlov, S. V. Ivanov, and K. P. Kokhas, St. Petersburg Mathematical Olympiads [in Russian], Problem 97.109. Lan’, St. Petersburg (2003).

    Google Scholar 

  2. 2.

    K. P. Kokhas, “Domino tilings,” Mat. Prosveschenie, 3rd Series, No. 9, 143–163 (2005).

  3. 3.

    M. Ciucu, “Enumeration of perfect matchings in graphs with reflective symmetry,” J. Combin. Theory Ser. A, 77, No. 1, 67–97 (1997).

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    M. Ciucu, “Perfect matchings and perfect powers,” J. Algebraic Combin., 17, No. 3, 335–375 (2003).

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    N. Elkies, G. Kuperbeg, M. Larsen, and J. Propp, “Alternating-sign matrices and domino tilings,” J. Algebraic Combin., 1, 111–132 (1992).

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    I. M. Gessel and X. G. Viennot, “Determinants, paths and plane partitions,” preprint (1989).

  7. 7.

    P. John, P. Sachs, and H. Zarnitz, “Domino covers in square chessboards,” Zastosowania Matematyki (Applicationes Mathematicae), XIX, No. 3–4, 635–641 (1987).

    Google Scholar 

  8. 8.

    P. W. Kasteleyn, “The statistics of dimers on a lattice I. The number of dimer arrangements on a quadratic lattice,” Physica, 27, 1209–1225 (1961).

    Article  Google Scholar 

  9. 9.

    E. Kuo, “Application of graphical condensation for enumerating matchings,” Theoret. Comput. Sci., 319, 29–57 (2004); arXiv:math.CU/0304090.

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    L. Pachter, “Combinatorial approaches and conjectures for 2-divisibility problems concerning domino tilings of polyminoes,” Electron. J. Combin., 4, R29 (1997).

    MathSciNet  Google Scholar 

  11. 11.

    J. Propp, “Frieze-ing and condensation,”

  12. 12.

    J. Propp, “Generalized domino shuffling,” arXiv:math.C0/0111034.

  13. 13.

    J. Propp and R. Stanley, “Domino tilings with barriers,” J. Combin. Theory Ser. A, 87, No. 2, 347–356 (1999); arXiv:math.C0/9801067.

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Eu Sen-Peng and Fu Tung Shan, “A simple proof of Aztec diamond theorem,” arXiv:math.C0/0412041.

  15. 15.

    D. Speyer, “Perfect matchings and the octahedron recurrence,” J. Algebraic Combin., 25, No. 3, 309–348 (2007).

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    V. Strehl, “Counting domino tilings of rectangles via resultants,” Adv. in Appl. Math., 27, No. 2–3, 597–626 (2001).

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Yang Bo-Yin, “Three enumeration problems concerning Aztec diamonds,” Ph.D. thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts (1991).

Download references

Author information



Corresponding author

Correspondence to K. P. Kokhas.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 360, 2008, pp. 180–230.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kokhas, K.P. Domino tilings of Aztec diamonds and squares. J Math Sci 158, 868–894 (2009).

Download citation


  • Russia
  • Side Length
  • Special Weight
  • Aztec
  • Combinatorial Proof