Skip to main content

Advertisement

Log in

Estimates of deviations from exact solutions of variational inequalities based upon Payne–Weinberger inequality

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A new method for obtaining computable estimates for the difference between exact solutions of elliptic variational inequalities and arbitrary functions in the respective energy space is suggested. The estimates are obtained by transforming the corresponding variational inequality without the use of variational duality arguments. These estimates are valid for any function in the energy class and contain no constants depending on the mesh used to find an approximate solution. This method for linear elliptic and parabolic problems was earlier suggested by the author. The guaranteed error bounds we derive can be of two types. Estimates of the first type contain only one global constant, which is a constant in the Friedrichs type inequality. Estimates of the second type are based on the decomposition of Ω into convex subdomains and the Payne–Weinberger inequalities for these subdomains. Bibliography: 20 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Repin, “A posteriori estimates for approximate solutions of variational problems with strongly convex functionals” [in Russian], Probl. Mat. Anal. 17, 199–226 (1997); English transl.: J. Math. Sci, (New York) 97, No. 4, 4311–4328 (1999).

    MATH  Google Scholar 

  2. S. Repin, “Two-sided estimates of deviation from exact solutions of uniformly elliptic equations” [in Russian], Tr. St-Peterbg. Mat. Obshch. 9, 148–179 (2001); English transl.: Transl., Ser. 2, Am. Math. Soc. 209, 143–171 (2003).

    MathSciNet  Google Scholar 

  3. S. Repin, “A unified approach to a posteriori error estimation based on duality error majorants,” Math. Comput. Simulat. 50, 313–329 (1999).

    Article  MathSciNet  Google Scholar 

  4. S. Repin, “A posteriori error estimates for variational problems with uniformly convex functionals,” Math. Comput. 69(230), 481–500 (2000).

    MATH  MathSciNet  Google Scholar 

  5. S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin (2008).

    MATH  Google Scholar 

  6. S. Repin, “Advanced forms of functional a posteriori estimates for elliptic problems,” Russ. J. Numer. Anal. Math. Model. 23, 505–521 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. E. Payne and H. F. Weinberger, “An optimal Poincaré inequality for convex domains,” Arch. Rat. Mech. Anal. 5, 286–292 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Duvant and J.-L. Lions, Les inequations en mecanique et en physique, Dunod, Paris (1972).

    Google Scholar 

  9. A. Friedman, Variational Principles and Free-Boundary Problems, Wiley & Sons, New York (1982).

    MATH  Google Scholar 

  10. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New-York (1982).

    Google Scholar 

  11. R. Glovinski, J.-L. Lions, and R. Trémolierès, Analyse numérique des inéquations variationnelles, Dunod, Paris, (1976).

    Google Scholar 

  12. W. Han and D. C. Reddy, “On the finite element method for mixed variational inequalities arising in elastoplasticity,” SIAM J. Numer. Anal. 32, 1776–1807 (1995).

    Article  MathSciNet  Google Scholar 

  13. R. S. Falk, “Error estimates for the approximation of a class of variational inequalities,” Math. Comput. 28, 963–971 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Kornhuber, “A posteriori error estimates for elliptic variational inequalities,” Comput. Math. Appl. 31, 49–60 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Repin, “Estimates of deviations from exact solutions of elliptic variational inequalities,” Zap. Nauchn. Semin. POMI 271, 188–203 (2000); English transl.: J. Math. Sci., New York 115, No. 6, 2811–2819 (2003).

    Google Scholar 

  16. P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation, Error Control and a Posteriori Estimates, Elsevier, New York (2004).

    MATH  Google Scholar 

  17. M. Bildhauer, M. Fuchs, and S. Repin, “A posteriori error estimates for stationary slow flows of power-law fluids,” J. Non-Newtonian Fluid Mech. 142, 112–122 (2007).

    Article  MATH  Google Scholar 

  18. M. Bildhauer, M. Fuchs, and S. Repin, “Duality based on posteriori error estimates for higher order variational inequalities with power growth functionals,” Ann. Acad. Sci. Fenn. Math. 33, No. 2, 475–490 (2008).

    MATH  MathSciNet  Google Scholar 

  19. M. Fuchs and S. Repin, “Estimates for the deviation from the exact solutions of variational problems modeling certain classes of generalized Newtonian fluids,” Math. Meth. Appl. Sci. 29, 2225–2244 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Repin, “Functional a posteriori estimates for elliptic variational inequalities,” [in Russian], Zap. Nauchn. Semin. POMI 348, 147–164 (2007); English transl.: J. Math. Sci., New York 152, No. 5, 702–717 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Repin.

Additional information

Translated from Problems in Mathematical Analysis 39 February, 2009, pp. 81–90.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repin, S.I. Estimates of deviations from exact solutions of variational inequalities based upon Payne–Weinberger inequality. J Math Sci 157, 874–884 (2009). https://doi.org/10.1007/s10958-009-9363-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9363-9

Keywords

Navigation