Skip to main content
Log in

Generalized solutions for singular optimal control problems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This text presents a complete theory of existence/uniqueness and the structure of generalized solutions for singular linear-quadratic optimal control problems. Generalized optimal controls are distributions of order r and the corresponding generalized trajectories are distributions of order (− 1). r is the “order of singularity” of the problem, an integer no greater than the dimension of the state space. Its value is obtained through a certain reduction procedure. In the final section, some perspectives and partial results concerning the extension of these results to nonlinear problems are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev and R. V. Gamkrelidze, “Exponential representation of flows and chronological calculus,” Mat. Sb., 35, 727–785 (1979).

    Article  MATH  Google Scholar 

  2. A. A. Agrachev and A. V. Sarychev, “On reduction of a smooth system linear in the control,” Mat. Sb., 58, No. 1, 15–30 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, “Local invariants of smooth control systems,” Acta Appl. Math., 14, 191–237 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. A. Agrachev and A. V. Sarychev, “Abnormal sub-Riemanian geodesics: Morse index and rigidity,” Ann. Inst. Poincaré, Anal. Nonlin., 13, No. 6, 635–690 (1996).

    MATH  MathSciNet  Google Scholar 

  5. A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer-Verlag (2004).

  6. D. S. Bernstein and V. Zeidan, “The singular linear-quadratic regulator problem and the Goh–Riccati equation,” in: Proc. 29th Conf. Decision and Control, Honolulu, Hawaii (1990), pp. 334–339.

  7. A. Bressan, “On differential systems with impulsive controls,” Rend. Semin. Univ. Padova, 78, 227–235 (1987).

    MathSciNet  Google Scholar 

  8. A. Bressan and F. Rampazzo, “Impulsive control systems without commutativity assumptions,” J. Optim. Theory Appl., 81, No. 3, 435–457 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Casti, “The linear-quadratic control problem: some recent results and outstanding problems,” SIAM Rev., 22, 459–485 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Cesari, Optimization Theory and Applications. Problems with Differential Equations, Springer-Verlag (1983).

  11. D. J. Clements and B. D. O. Anderson, Singular Optimal Control: The Linear-Quadratic Problem, Lect. Notes Control Inform. Sci., Springer-Verlag (1978).

  12. P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Grad. School of Science (1964).

  13. R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press (1978).

  14. J.-P. Gauthier and V. Zakalyukin, “On the motion planning problem, complexity, entropy and nonholonomic interpolation,” J. Dynam. Control Syst., 12, No. 3, 371–404 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Guerra, “Generalized solutions for linear-quadratic optimal control problems,” in: Equadiff’99: Int. Conf. on Differential Equations (B. Fiedler, K. Gröger, and J. Sprekels, eds.), Vol. 2, World Scientific (2000), pp. 856–858.

  16. M. Guerra, “Highly singular L-Q problems: Solutions in distribution spaces,” J. Dynam. Control Syst., 6, No. 2, 265–309 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Guerra, “Singular L-Q problems and the Dirac–Bergmann theory of constraints,” in: Nonlinear Control 2000 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), Springer-Verlag (2001), pp. 409–422.

  18. M. Guerra, Generalized Solutions for Singular L-Q Problems [in Portuguese], Ph.D. Thesis, Univ. of Aveiro (2001).

  19. M. Guerra, “Distribution-like Hamiltonian flows and generalized optimal controls,” J. Math. Sci., 120, No. 1, 895–918 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Guerra, “Hamiltonian flows for impulsive control systems,” in: Generalized Solutions in Control Problems (Yu. L. Sachkov, ed.), Proc. IFAC Workshop GSCP-04 and satellite events, Pereslavl-Zalessky, Russia, September 21–29, 2004, (2004), pp. 77–92.

  21. M. Guerra, “Discontinuous Hamiltonian flows for nonlinear control systems,” Rend. Sem. Mat. Univ. Pol. Torino, 64, No. 4, 363–382 (2005).

    MathSciNet  Google Scholar 

  22. M. Guerra, “Geometrical synthesis for noncoercive nonconvex optimal control problems,” in: Proc. CONTROLO’2006 (M. Ayala Botto, ed.), 7th Portuguese Conference on Automatic Control, IST September 11–13, 2006, (2006), WA2-1 (CD-ROM).

  23. M. Guerra and A. Sarychev, “Generalized optimal controls for the singular linear-quadratic problem,” in: Proc. 3th Portuguese Conf. on Automatic Control, Controlo’98, APCA (1998), pp. 431–436.

  24. M. Guerra and A. Sarychev, “Regularizations of optimal control problems for control-affine systems,” in: Proc. 17th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS 2006) (Y. Yamamoto, ed.), Kyoto, Japan, July 24-28, 2006, (2006), pp. 490–500.

  25. M. Guerra and A. Sarychev, “Approximation of generalized minimizers and regularization of optimal control problems,” in: Proc. IFAC 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC’06) (F. Bullo and K. Fujimoto, eds.), Nagoya, Japan, July 19–21, 2006, (2006), pp. 233–238.

  26. M. Guerra and A. Sarychev, “Existence and Lipschitzian regularity for relaxed minimizers,” submitted to Proc. Workshop on Mathematical Control Theory and Finance, Lisbon, Portugal, April 2007.

  27. F. Jean, “Entropy and complexity of a path in sub-Riemannian geometry,” ESAIM Control Optim. Calc. Var., 9, 485–508 (2003).

    MATH  MathSciNet  Google Scholar 

  28. V. Jurdjevic, “The Lie saturate and its applications to singular control problems,” in: New Trends in Nonlinear Control Theory. Proc. Int. Conf. Nonlinear Syst., Nantes, France, 1988, Lect. Notes Control Inf. Sci., 122 (1989), pp. 222–230.

  29. V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press (1997).

  30. V. Judjevic and I. A. K. Kupka, Linear systems with singular quadratic cost, Preprint (1992).

  31. R. E. Kalman, “Contributions to the theory of optimal control,” Bol. Soc. Mat. Mexicana, II. Ser., 5, 102–119 (1960).

    MathSciNet  Google Scholar 

  32. M. A. Krasnosel’skii and A. V. Pokrovskii, “Vibrostable differential equations with discontinuous right-hand sides,” Tr. Mosk. Math. Obshch., 27, 92–112 (1972).

    MathSciNet  Google Scholar 

  33. I. A. K. Kupka, “Degenerate linear systems with quadratic cost under finiteness assumptions,” in: New Trends in Nonlinear Control Theory. Proc. Int. Conf. Nonlinear Syst., Nantes, France, 1988, Lect. Notes Control Inf. Sci., 122, (1989), pp. 231–239.

  34. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley (1967).

  35. B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Springer-Verlag (2003).

  36. Yu. Orlov, “Variational analysis of optimal systems with generalized controls of measure type, I,” Autom. Remote Control, 48, 160–165 (1987).

    MATH  Google Scholar 

  37. Yu. Orlov, “Variational analysis of optimal systems with generalized controls of measure type, II”, Autom. Remote Control, 48, 306–316 (1987).

    MATH  Google Scholar 

  38. Yu. Orlov, Theory of Optimal Systems with Generalized Controls [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  39. F. Rampazzo, “Lie brackets and impulsive controls: An unavoidable connection,” in: Differential Geometry and Control (G. Ferreyra et al., eds.), Proc. Summer Research Inst., Boulder, USA, 1997, Amer. Math. Soc., Proc. Symp. Pure Math., 64, (1999), pp. 279–296.

  40. F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publ. (1990).

  41. W. Rudin, Real and Complex Analysis, McGraw-Hill (1987).

  42. A. Sarychev, “Integral representation of trajectories of control systems with generalized right sides,” Differ. Uravn., 24, No. 9, 1551–1564 (1988).

    MathSciNet  Google Scholar 

  43. A. Sarychev, “Nonlinear systems with impulsive and generalized function controls,” in: Nonlinear Synthesis (C. I. Byrnes and A. Kurzhansky, eds.), Proc. IIASA Workshop, Sopron, Hungary, June 1989, Birkäuser (1991), pp. 244–257.

  44. E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts Appl. Math., 6, Springer-Verlag (1990).

  45. G. Stefani and P. Zezza, “Constrained regular LQ-control problems,” SIAM J. Control Optim., 35, No. 3, 876–900 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  46. K. Volckaert and D. Aeyels, “The Gotay–Nester algorithm in singular optimal control,” in: Proc. 38th Conf. Decision and Control, Phoenix, Arizona, USA (1999), pp. 873–874.

  47. J. C. Willems, A. Kitapçi, and L. M. Silverman, “Singular optimal control: A geometric approach,” SIAM J. Control Optim., 24, No. 2, 323–337 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  48. S. T. Zavalischin and A. N. Sesekin, Dynamic Impulse Systems. Theory and Applications. Mathematics and Its Applications, 394, Kluwer (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guerra.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 27, Optimal Control, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, M. Generalized solutions for singular optimal control problems. J Math Sci 156, 440–567 (2009). https://doi.org/10.1007/s10958-008-9274-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9274-1

Keywords

Navigation