Skip to main content
Log in

Cyclic projectors and separation theorems in idempotent convex geometry

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Semimodules over idempotent semirings like the max-plus or tropical semiring have much in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of the n-fold Cartesian product of the max-plus semiring: It is known that one can separate a vector from a closed subsemimodule that does not contain it. Here we establish a more general separation theorem, which applies to any finite collection of closed subsemimodules with a trivial intersection. The proof of this theorem involves specific nonlinear operators, called here cyclic projectors on idempotent semimodules. These are analogues of the cyclic nearest-point projections known in convex analysis. We obtain a theorem that characterizes the spectrum of cyclic projectors on idempotent semimodules in terms of a suitable extension of Hilbert's projective metric. We also deduce as a corollary of our main results the idempotent analogue of Helly's theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity, Wiley, New York (1992).

    MATH  Google Scholar 

  2. H. H. Bauschke, J. M. Borwein, and A. S. Lewis, “The method of cyclic projections for closed convex sets in Hilbert space,” in: Y. Censor and S. Reich, eds., Recent Developments in Optimization Theory and Nonlinear Analysis, Contemp. Math., Vol. 204, Amer. Math. Soc., Providence (1997), pp. 1–42.

    Google Scholar 

  3. G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence (1967).

    MATH  Google Scholar 

  4. T. S. Blyth and M. F. Janowitz, Residuation Theory, Pergamon Press (1972).

  5. P. Butkovič, H. Schneider, and S. Sergeev, “Generators, extremals and bases of max cones,” Linear Algebra Appl., 421, 394–406 (2007), arXiv:math.RA/0604454.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Cohen, S. Gaubert, and J. P. Quadrat, “Duality and separation theorems in idempotent semimodules,” Linear Algebra Appl., 379, 395–422 (2004), arXiv:math.FA/0212294.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Cohen, S. Gaubert, J. P. Quadrat, and I. Singer, “Max-plus convex sets and functions,” in: G. Litvinov and V. Maslov, eds., Idempotent Mathematics and Mathematical Physics, Contemp. Math., Vol. 377, Amer. Math. Soc., Providence (2005), pp. 105–129, arXiv:math.FA/0308166.

    Google Scholar 

  8. R. A. Cuninghame-Green, “Projections in minimax algebra,” Math. Programming, 10, No. 1, 111–123 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. A. Cuninghame-Green, Minimax Algebra, Lect. Notes Economics Math. Systems, Vol. 166, Springer, Berlin (1979).

    MATH  Google Scholar 

  10. R. A. Cuninghame-Green and P. Butkovič, “The equation Ax = By over (max, +),” Theor. Comput. Sci., 293, 3–12 (2003).

    Article  MATH  Google Scholar 

  11. M. Develin and B. Sturmfels, “Tropical convexity,” Documenta Math., 9, 1–27 (2004), arXiv:math.MG/0308254.

    MATH  MathSciNet  Google Scholar 

  12. H. G. Eggleston, Convexity, Cambridge Univ. Press (1958).

  13. S. Gaubert and R. Katz, “The Minkowski theorem for max-plus convex sets,” Linear Algebra Appl., 421, 356–369 (2007), arXiv:math.GM/0605078.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Gaubert and F. Meunier, private communication (2006).

  15. J. Golan, Semirings and Their Applications, Kluwer, Dordrecht (2000).

    Google Scholar 

  16. V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Applications, Kluwer, Dordrecht (1997).

    MATH  Google Scholar 

  17. G. L. Litvinov, “Maslov dequantization, idempotent and tropical mathematics: A brief introduction,” J. Math. Sci., 140, No. 3, 426–444 (2007).

    Article  MathSciNet  Google Scholar 

  18. G. Litvinov and V. Maslov, eds., Idempotent Mathematics and Mathematical Physics, Contemp. Math., Vol. 377, Amer. Math. Soc., Providence (2005).

    MATH  Google Scholar 

  19. G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, “Idempotent functional analysis. An algebraic approach,” Math. Notes, 69, No. (5), 696–729 (2001), arXiv:math.FA/0009128.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Nitica and I. Singer, “The structure of max-plus hyperplanes,” Linear Algebra Appl., 426, 382–414 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  21. R. D. Nussbaum, “Convexity and log convexity for the spectral radius,” Linear Algebra Appl., 73, 59–122 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  22. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press (1970).

  23. S. N. Samborskii and G. B. Shpiz, “Convex sets in the semimodule of bounded functions,” in: V. P. Maslov and S. N. Samborskii, eds., Idempotent Analysis, Adv. Sov. Math., Vol. 13, Amer. Math. Soc., Providence (1992), pp. 135–137.

    Google Scholar 

  24. K. Zimmermann, “A general separation theorem in extremal algebras,” Ekonomicko-Matematický Obzor, 13, No. 2, 179–201 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gaubert.

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 4, pp. 31–52, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaubert, S., Sergeev, S. Cyclic projectors and separation theorems in idempotent convex geometry. J Math Sci 155, 815–829 (2008). https://doi.org/10.1007/s10958-008-9243-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9243-8

Keywords

Navigation